高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于拓扑势的虚拟网络映射算法

刘新波 王布宏 杨智显 刘帅琦

刘新波, 王布宏, 杨智显, 刘帅琦. 一种基于拓扑势的虚拟网络映射算法[J]. 电子与信息学报, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981
引用本文: 刘新波, 王布宏, 杨智显, 刘帅琦. 一种基于拓扑势的虚拟网络映射算法[J]. 电子与信息学报, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981
LIU Xinbo, WANG Buhong, YANG Zhixian, LIU Shuaiqi. A Virtual Network Embedding Algorithm Based on Topology Potential[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981
Citation: LIU Xinbo, WANG Buhong, YANG Zhixian, LIU Shuaiqi. A Virtual Network Embedding Algorithm Based on Topology Potential[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1684-1690. doi: 10.11999/JEIT170981

一种基于拓扑势的虚拟网络映射算法

doi: 10.11999/JEIT170981
基金项目: 

国家自然科学基金(61401499),陕西省自然科学基金(2015JM6340)

详细信息
    作者简介:

    刘新波: 男,1983年生,博士生,研究方向为虚拟网络映射、网络优化. 王布宏: 男,1975年生,教授,博士,主要研究方向为网络安全、阵列信号处理. 杨智显: 男,1991年生,博士生,研究方向为网络安全、网络虚拟化. 刘帅琦: 女,1992年生,硕士生,研究方向为阵列信号处理、网络安全.

  • 中图分类号: TP393

A Virtual Network Embedding Algorithm Based on Topology Potential

Funds: 

The National Natural Science Foundation of China (61401499), Shanxi Provincial Natural Science Foundation (2015JM6340)

  • 摘要: 该文针对现有的虚拟网络映射算法对网络中节点的拓扑属性考虑不够周到,导致其请求接受率和收益开销比较低的问题,将物理学里的场论思想引入了虚拟网络映射,并提出一种基于拓扑势的虚拟网络映射算法。该算法在节点映射阶段,通过计算节点的拓扑势、节点的资源能力、待映射节点与已映射节点之间的距离,将虚拟节点映射至最佳的物理节点。在链路映射阶段,通过计算物理路径的可用带宽和路径跳数,将虚拟链路映射至最佳的物理路径。仿真实验表明,该算法在多种虚拟网络到达强度下的请求接受率和收益开销比均优于当前的虚拟网络映射算法。
  • [2] FENG Jianyuan, ZHANG Qixun, DONG Guangzhe, et al. An approach to 5G wireless network virtualization: Architecture and trial environment[C]. IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1-6.
    KHOT A S, GAWAS J, and WAMAN S. Network virtualization on optical networks[C]. International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 2016: 568-573.
    [3] GHODA G, MERULIYA N, PAREKH D H, et al. A survey on data center network virtualization[C]. International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 3464-3470.
    [4] ALCOBER J, HESSELBACH X, OLIVA A, et al. Internet future architectures for network and media independent services and protocols[C]. International Conference on Transparent Optical Networks, Cartagena, Spain, 2013: 1-4.
    [5] ANDERSON T, PETERSON L, SHENKER S, et al. Overcoming the Internet impasse through virtualization[J]. Computer, 2005, 38(4): 34-41. doi: 10.1109/MC.2005.136.
    YU Jianjun and WU Chunming. Virtual network mapping approximation algorithm with admission control[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1235-1241. doi: 10.3724/SP.J.1146.2013.00965.
    [7] AMALDI E, CONIGLIO S, KOSTER A M C A, et al. On the computational complexity of the virtual network embedding problem[J]. Electronic Notes in Discrete Mathematics, 2016, 52(6): 213-220. doi: 10.1016/j.endm.2016.03.028.
    [8] WANG Li, QU Hua, ZHAO Jihong, et al. Virtual network embedding with discrete particle swarm optimization[J]. Electronics Letters, 2014, 50(4): 285-286. doi: 10.1049/el. 2013.3202.
    [9] GUAN Xinjie, WAN Xili, CHOI B Y, et al. Ant colony optimization based energy efficient virtual network embedding[C]. IEEE 4th International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 273-278.
    [10] RICCI R, ALFELD C, and LEPREAU J. A solver for the network testbed mapping problem[J]. ACM SIGCOMM Computer Communication Review, 2003, 33(2): 65-81. doi: 10.1145/956981.956988.
    [11] ZHU Yong and AMMAR M. Algorithms for assigning substrate network resources to virtual network components [C]. IEEE International Conference on Computer Communications, Barcelona, Spain, 2006: 1-12.
    [12] YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29. doi: 10.1145/1355734.1355737.
    [13] CHENG Xiang, SU Sen, ZHANG Zhongbao, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(2): 39-47. doi: 10.1145/1971162.1971168.
    [14] DING Jian, HUANG Tao, LIU Jiang, et al. Virtual network embedding based on real-time topological attributes[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(2): 109-118.
    [15] GONG Shuiqing, CHEN Jing, ZHAO Siyi, et al. Virtual network embedding with multi-attribute node ranking based on TOPSIS[J]. KSII Transactions on Internet and Information Systems, 2016, 10(2): 522-541. doi: 10.3837/tiis. 2016.02.005.
    [16] BIANCHI F and PRESTI FL. A markov reward model based greedy heuristic for the virtual network embedding problem[C]. IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, London, UK, 2016: 373-378.
    GAN Wenyan, LI Deyi, and WANG Jianmin. An hierarchical clustering method based on data fields[J]. Acta Electronica Sinica, 2006, 34(2): 258-262.
    [18] HE Nan, GAN Wenyan, and L I Deyi. Evaluate nodes importance in the network using data field theory[C]. International Conference on Convergence Information Technology, Gyeongju, South Korea, 2007: 1225-1230.
  • 加载中
计量
  • 文章访问数:  1529
  • HTML全文浏览量:  179
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-20
  • 修回日期:  2018-02-27
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回