高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于樽海鞘群算法的无源时差定位

陈涛 王梦馨 黄湘松

陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597. doi: 10.11999/JEIT170979
引用本文: 陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597. doi: 10.11999/JEIT170979
CHEN Tao, WANG Mengxin, HUANG Xiangsong. Time Difference of Arrival Passive Location Based on Salp Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597. doi: 10.11999/JEIT170979
Citation: CHEN Tao, WANG Mengxin, HUANG Xiangsong. Time Difference of Arrival Passive Location Based on Salp Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597. doi: 10.11999/JEIT170979

基于樽海鞘群算法的无源时差定位

doi: 10.11999/JEIT170979
基金项目: 

国家自然科学基金项目(61571146),中央高校基本科研业务费专项基金(HEUCFP201769)

详细信息
    作者简介:

    陈涛:陈 涛: 男,1974年生,教授,博士生导师,研究方向为宽带信号检测、处理与识别. 王梦馨: 女,1994年生,硕士生,研究方向为宽带信号检测、无源定位. 黄湘松: 女,1980年生,讲师,研究方向为无源定位,语音、图像信号处理.

  • 中图分类号: TN971

Time Difference of Arrival Passive Location Based on Salp Swarm Algorithm

Funds: 

The National Natural Science Foundation of China (61571146), The Fundamental Research Funds for the Central Universities (HEUCFP201769)

  • 摘要: 针对无源时差(TDOA)定位的非线性方程解算问题,论文使用一种名为樽海鞘群算法(SSA)的新的群体智能优化算法。首先,该算法采用一种新的群体更新模型,充分平衡迭代过程中的探索行为与开发行为,在保证搜索的全局性与个体的多样性的同时,改善了其他智能优化算法容易陷入局部极值的问题。其次,该算法控制参数很少,运算速度明显提高。该算法的收敛速度十分稳定,定位精度更高。仿真结果表明,樽海鞘群算法在3维时差定位中能够快速、稳定地收敛至目标位置,对传统粒子群算法(PSO)、改进的线性权重粒子群算法(IPSO)与SSA的定位精度进行比较,SSA精度明显高于PSO与IPSO。
  • 田中成, 刘聪锋. 无源定位技术[M]. 北京: 国防工业出版社, 2015: 264-265.
    TIAN Zhongcheng and LIU Congfeng. Passive locating technology[M]. Beijing: National Defence Industry Press, 2015: 264-265.
    [2] FOY W H. Position-location solutions by Taylor-series estimation[J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, AES-12(2): 187-194. doi: 10.1109/TAES.1976. 308294.
    FANG Jiaqi, FENG Dazheng, and LI Jin. Research on modified Newton and Taylor-series methods in TDOA[J]. Journal of Xidian University, 2016, 43(6): 27-33. doi: 10.396/ j.issn.1001-2400.2016.03.005.
    DENG Bing, SUN Zhengbo, YANG Le, et al. Geolocation of a known altitude object using TOA measurements[J]. Journal of Xidian University, 2017, 44(3): 133-137. doi: 10.3969/j.issn. 1001-2400.2017.03.023.
    FENG Qi, QU Changwen, and LI Tingjun. Closed-form solution for passive location based on constrained weighted lease squares[J]. System Engineering and Electronics, 2017, 39(2): 263-268. doi: 10.3969/j.issn.1001-506X.2017.02.05.
    ZHAO Yongjun, ZHAO Yongsheng, and ZHAO Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2336-2343. doi: 10.11999/JEIT151379.
    [7] QU Xiaomei and XIE Lihua. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119(C): 142-152. doi: 10.1016/j.sigpro.2015.08.001.
    QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1075-1081. doi: 10.3724 /SP.J.1146.2013.01019.
    [9] YIN Jihao, WAN Qun, YANG Shiwen, et al. A simple and accurate TDOA-AOA localization method using two stations [J]. IEEE Signal Processing Letters, 2015, 23(1): 144-148. doi: 10.1109/LSP.2015.2505138.
    [10] WEI Yuanyuan and YAO Jinjie. Application on target localization based on adaptive particle swarm optimization algorithm[C]. 2010 6th International Conference on Wireless Communications Networking and Mobile Computing. Chengdu, China, 2010: 1245-1254.
    [11] KENNETH W K, ZHENG Jun, and So HC. Particle swarm optimization for time-difference-of-arrival based localization [C]. Signal Processing Conference, Wielkopolskie, Poland, 2007: 414-417.
    [12] MAJA Rosi, MIRJANA Simie, and PETAR Luki. TDOA approach for target localization based on improved genetic algorithm[C]. Telecommunications Forum, 2016 24th, Serbia, 2017: 1-4.
    [13] GAO Lipeng, SUN Heng, and LIU Mengnan. TDOA collaborative localization algorithm based on PSO and Newton iteration in WGS-84 coordinate system[C]. International Conference on Signal Processing, Chengdu, China, 2017: 1571-1575.
    [14] DAVID H W and WILLIAM G M. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893.
    [15] SEYEDALI M, AMIR H G, SEYEDEH Z M, et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114(1): 163-191. doi: 10.1016/j.advengsoft.2017.07.002.
  • 加载中
计量
  • 文章访问数:  2468
  • HTML全文浏览量:  364
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-20
  • 修回日期:  2018-03-30
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回