Research on the Construction of Plateaued Functions
-
摘要: Plateaued函数在密码学及编码等领域有着极其重要的应用,该文提出一种Plateaued函数的直接构造方法,研究了由该方法构造的Plateaued函数的密码学性质,证明了现有的直接构造方法可归约到本构造方法。
-
关键词:
- 布尔函数 /
- Plateaued函数 /
- 非线性度 /
- 弹性阶
Abstract: Plateaued functions play a significant role in cryptography, coding theory and so on. In this paper, a new primary construction of plateaued function is given. Some cryptographic properties of the constructed plateaued functions are studied. It is shown that the existing primary constructions of plateaued function can be reduced to the proposed construction.-
Key words:
- Boolean function /
- Plateaued function /
- Nonlinearity /
- Resiliency
-
表 1 谱值与根空间维数的关系
${W_f}({{ω}} )$ ${{ω}} $的个数 0 ${2^n} - {2^{n - t}}$ ${2^{(n + t)/2}}$ ${2^{n - t - 1}} + {( - 1)^{f(0)}}{2^{(n - t - 2)/2}}$ $ - {2^{(n + t)/2}}$ ${2^{n - t - 1}} - {( - 1)^{f(0)}}{2^{(n - t - 2)/2}}$ -
SARKAR P and MAITRA S. Nonlinearity bounds and constructions of resilient Boolean functions[C]. International Cryptology Conference, California, USA, 2000: 515–532. doi: 10.1007/3-540-44598-6_32. ZHENG Y L and ZHANG X M. On plateaued functions[J]. IEEE Transactions on Information Theory, 2001, 47(3): 1215–1223 doi: 10.1109/18.915690 Rothaus O S. On bent functions[J]. Journal of Combinatorial Theory, 1976, 20(3): 300–305 doi: 10.1016/0097-3165(76)90024-8 CARLET C. Partially bent functions[J]. Designs, Codes and Cryptography, 1993, 3(2): 135–145 doi: 10.1007/BF01388412 DILLON J F. Elementary Hadamard difference sets[D]. [Ph.D. dissertation], University of Maryland, 1974. doi: 10.13016/M2MS3K194. MCFARLAND R L. A family of difference sets in noncyclic groups[J]. Journal of Combinatorial Theory, 1973, 15(1): 1–10 doi: 10.1016/0097-3165(73)90031-9 CAMION P, CARLET C, CHARPIN P, et al. On Correlation immune functions[C]. International Cryptology Conference, California, USA, 1991: 68–100. doi: 10.1007/3-540-46766-1_6. CARLET C. A larger Class of Cryptographic Boolean functions via a study of the Marorana-McFarland Construction[C]. International Cryptology Conference, California, USA, 2002: 68–100. doi: 10.1007/3-540-45708-9_35. CARLET C and PROUFF E. On plateaued functions and their construction[C]. Fast Software Encryption, Lund, Sweden, 2003: 54–73. doi: 10.1007/978-3-540-39887-5_6. ZHENG Y L and ZHANG X M. Plateaued functions[C]. International Conference on Information and Communications Security, Berlin, Heidelberg, 1999: 284–300. doi: 10.1007/978-3-540-47942-0_24. ZHANG F R, CARLET C, HU Y P, et al. Secondary constructions of highly nonlinear Boolean functions and disjoint spectra plateaued functions[J]. Information Sciences, 2014, 283: 94–106 doi: 10.1016/j.ins.2014.06.024 CUSICK T W. Highly nonlinear plateaued functions[J]. IET Information Security, 2017, 11(2): 78–81 doi: 10.1049/iet-ifs.2016.0131 ZHANG F R, CARLET C, HU Y P, et al. New secondary constructions of bent functions[J]. Applicable Algebra in Engineering, Communication and Computing, 2016, 27(5): 413–434 doi: 10.1007/s00200-016-0287-6 HYUN J Y, LEE J, and LEE Y. Explicit criteria for construction of plateaued functions[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7555–7565 doi: 10.1109/TIT.2016.2582217 MESNAGER S, TANG C M, and QI Y F. Generalized plateaued functions and admissible (plateaued) functions[J]. IEEE Transactions on Information Theory, 2017, 63(10): 6139–6148 doi: 10.1109/TIT.2017.2715804 OLMEZ O. Plateaued functions and one-half difference sets[J]. Designs, Codes and Cryptography, 2015, 76(3): 537–549 doi: 10.1007/s10623-014-9975-z CANTEAUT A, CHARPIN P, and KYUREGHYAN G M. A new class of monomial bent functions[J]. Finite Fields and Their Applications, 2008, 14(1): 221–241 doi: 10.1016/j.ffa.2007.02.004
表(1)
计量
- 文章访问数: 6043
- HTML全文浏览量: 654
- PDF下载量: 188
- 被引次数: 0