高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进蚁狮算法的无人机三维航迹规划

黄长强 赵克新

黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961
引用本文: 黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961
HUANG Changqiang, ZHAO Kexin. Three Dimensional Path Planning of UAV with Improved Ant Lion Optimizer[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961
Citation: HUANG Changqiang, ZHAO Kexin. Three Dimensional Path Planning of UAV with Improved Ant Lion Optimizer[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961

基于改进蚁狮算法的无人机三维航迹规划

doi: 10.11999/JEIT170961
基金项目: 

国家自然科学基金(61601505),航空科学基金(20155196022)

详细信息
    作者简介:

    黄长强: 男,1961年生,教授,博士生导师,研究方向为无人机总体设计与技术. 赵克新: 男,1992年生,硕士生,研究方向为无人机武器系统设计.

  • 中图分类号: V279

Three Dimensional Path Planning of UAV with Improved Ant Lion Optimizer

Funds: 

The National Natural Science Foundation of China (61601505), The Aviation Science Foundation (20155196022)

  • 摘要: 无人机3维航迹规划是任务规划中最复杂、重要的部分,针对基本蚁狮算法在解决3维航迹规划时能力不足的问题,首先在蚂蚁的行为中引入混沌调节因子,在蚁狮的行为中引入反调节因子,提高了算法的探索能力和开发能力;其次在建立3维环境模型的基础上,充分利用地形和约束信息,缩减搜索空间;最后将改进后的算法应用于3维航迹规划,并与原算法进行对比, 实现在线局部重规划。仿真实验结果验证了改进方法的可行性和优越性。
  • [2] CEKMEZ U, OZSIGINAN, and SAHINGOZ O K. Multi colony ant optimization for UAV path planning with obstacle[C]. International Conference on Unmanned Aircraft  System, Piscataway, USA, 2016: 47-52.
    XU Chunfang, DUAN Haiban, and LIU Fang. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning[J]. Aerospace Science Technology, 2010, 14(8): 535-541. doi: 10.1016/j.ast.2010-04- 008.
    [3] ZHANG Daqiao, XIAN Yong, LI Jie, et al. UAV path planning based on chaos ant colony algorithm[C]. International Conference on Computer Science and Mechanical Automation, Hangzhou, China, 2015: 81-85.
    [4] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science & Technology, 2015, 16(1): 47-55. doi: 10.1016/j.ast.2011.02.006.
    LIU Zhen, SHI Jianguo, and GAO Xiaoguang. Application of voronoi diagram in flight path planning[J]. Acta Aeronauticaet Astronautica Sinica, 2008, 29(5): 15-19. doi: 1000-6893(2008)0S15-05.
    [6] WU Qi, PAN Guangzhen, and YANG Jiangtao. Route planning of UAV based on voronoi diagram and dynamic and adaptive ant colony algorithm[J]. Computer Measurement and Control, 2016, 22(9): 3037-3041. doi: 1671-4598-(2014) 09-3037-04.
    [7] KENNEGY J and EBERHART R. Particle swarm optimization[C]. Proceedings of the IEEE International Conference on Neural Networks. Piscataway, USA, 1995: 1942-1948.
    [8] PENG Zhihong, LI Bo, CHEN Xiaotian, et al. Online route planning for UAV based on model predictive control and particle swarm optimization algorithm[C]. 10th World Congress on Intelligent Control and Automation, Piscataway, USA, 2015: 397-401.
    [9] LI Shibo, SUN Xiuxia, and XU Yuejie. Particle Swarm optimization for route planning of unmanned air vehicles[C]. Proceedings of the Congress on Information Acquisition, Weihai, China, 2006: 1213-1218.
    [10] FU Yangguang, DING Mingyue, and ZHOU Chengping. Routing planning for Unmanned Aerial Vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization[J]. IEEE Transactions on Systems, 2016, 43(6): 1451-1465. doi: 10.1109/TSMC.2013. 2248146.
    HE Pei, QU Xiangju, and WU Zhe. Aircraft referenced flight path planning by using adaptive genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 499-502. doi: 1000-6893(2003)06-0499-04.
    TIAN Jing, CHEN Yan, and SHEN Lincheng, Cooperative search algorithm for multi-UAVs in uncertainty environment [J]. Journal of Electronics & Information Technology, 2007, 29(10): 2325-2328. doi: 1009-5896(2007)10-2325-04.
    [13] GLABOWSKI M, MUSZNICKI B, NOWAK P, et al. An algorithm for finding shortest path tree using ant colony optimization metaheuristic[J]. Advances in Intelligent Systems and Computing, 2014, 233: 317-326. doi: 10.1007 /978-3-319-016222-1-36.
    [14] YAO Peng and WANG Honglun. Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle[J]. Soft Computing, 2016, 21(18): 5475-5488. doi: 10.1007/s00500- 016-2138-6.
    ZHANG Shuai and LI Xueren. UAV 3D real-time path planning based on dynamic step[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2745-2753. doi: 10.13700/j.bh.1001-5965.2015.0821.
    [16] MIRJALILII S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(C): 80-98. doi: 10.4028/www. scientific.net/AMM.834.187.
    [17] YAO Pei. UAV path planning based on disturbed fluid and trajectory propagation[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1163-1174. doi: 10.1016/j.neucom.2015.09.039. 
    [18] ALZUGARAY I, TEIXEIRA L, and CHLI M. Short-term UAV path-planning with monocular-inertial SLAM in the loop[C]. IEEE International Conference on Robotics & Automation, Singapore, 2017: 1705-1713.
  • 期刊类型引用(23)

    1. 胡城,蔡延光,黄嘉铖,曾庆丰. 蚁狮优化算法研究综述. 自动化与信息工程. 2024(03): 1-10+15 . 百度学术
    2. 陈伟,杨盘隆,吴宣够. 改进蚁狮优化算法及其工程应用. 传感技术学报. 2023(04): 565-574 . 百度学术
    3. 郭家虎,时曼玉. 自适应可调节边界的蚁狮优化算法. 安徽理工大学学报(自然科学版). 2023(04): 1-9+18 . 百度学术
    4. 丁敏,夏兴宇,邹永杰,张乐,刘正堂. 基于改进蝴蝶优化算法的无人机3-D航迹规划方法. 南京航空航天大学学报. 2023(05): 851-858 . 百度学术
    5. 王博文,王培,徐鲁豫. 基于紧凑蚁狮算法的三维路径规划研究. 微电子学与计算机. 2023(08): 19-27 . 百度学术
    6. 韩统,汤安迪,周欢,徐登武,谢磊. 基于LASSA算法的多无人机协同航迹规划方法. 系统工程与电子技术. 2022(01): 233-241 . 百度学术
    7. 李彦苍,吴悦. 基于高斯变异的蚁狮算法及其在组合优化中的应用. 中国科技论文. 2022(03): 295-304 . 百度学术
    8. 张浩,覃涛,徐凌桦,王霄,杨靖. 改进多目标蚁狮算法的WSNs节点部署策略. 西安电子科技大学学报. 2022(05): 47-59 . 百度学术
    9. 来磊,吴德伟,邹鲲,韩昆,李海林. 基于多准则交互膜进化算法的UAV三维航迹规划. 系统工程与电子技术. 2021(01): 138-146 . 百度学术
    10. 马凯强,任利锋,曾喆,万剑华. 顾及恶劣海况的船舶救援路径规划. 海洋科学. 2021(05): 39-46 . 百度学术
    11. 来磊,邹鲲,吴德伟,李保中. 交互策略改进MOFA进化的多UAV协同航迹规划. 系统工程与电子技术. 2021(08): 2282-2289 . 百度学术
    12. 王沙沙,张则强,刘俊琦,陈凤. 多路径交互环形过道布置问题建模及改进蚁狮算法优化. 计算机集成制造系统. 2021(08): 2237-2247 . 百度学术
    13. 靳江锋,刘旭. 联合多核FCM和改进GOA的多无人机协同侦查航迹规划. 兵器装备工程学报. 2021(11): 181-188 . 百度学术
    14. 刘景森,霍宇,李煜. 优选策略的自适应蚁狮优化算法. 模式识别与人工智能. 2020(02): 121-132 . 百度学术
    15. 李庆华,尤越,沐雅琪,张钊,冯超. 一种针对大型凹型障碍物的组合导航算法. 电子与信息学报. 2020(04): 917-923 . 本站查看
    16. 李靖,杨帆. 基于改进灰狼优化算法的区域监测机器人路径规划. 科学技术与工程. 2020(15): 6122-6129 . 百度学术
    17. 孟德智,葛斌. 基于蜂窝分区的蚁狮优化自适应路由算法. 金陵科技学院学报. 2020(02): 17-23 . 百度学术
    18. 王茜,何庆,林杰,杨荣莹. 精英反向学习带扰动因子的混沌蚁狮算法. 智能计算机与应用. 2020(08): 51-57 . 百度学术
    19. 杨帆,方玺,高飞,谢良. 面向三维陷阱空间的改进RRT算法航迹规划. 武汉理工大学学报. 2020(10): 98-106 . 百度学术
    20. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
    21. 徐钦帅,何庆,魏康园. 改进蚁狮算法的无线传感器网络覆盖优化. 传感技术学报. 2019(02): 266-275 . 百度学术
    22. ZHANG Zhenxing,YANG Rennong,LI Huanyu,FANG Yuhuan,HUANG Zhenyu,ZHANG Ying. Antlion optimizer algorithm based on chaos search and its application. Journal of Systems Engineering and Electronics. 2019(02): 352-365 . 必应学术
    23. 边莉,何辉,杨彦方,刘文静. 基于改进型蚁狮算法的PID控制器参数优化. 吉林大学学报(信息科学版). 2019(03): 292-298 . 百度学术

    其他类型引用(23)

  • 加载中
计量
  • 文章访问数:  1633
  • HTML全文浏览量:  327
  • PDF下载量:  135
  • 被引次数: 46
出版历程
  • 收稿日期:  2017-10-19
  • 修回日期:  2018-03-21
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回