高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合

朱浩然 刘云清 张文颖

朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294-1300. doi: 10.11999/JEIT170956
引用本文: 朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294-1300. doi: 10.11999/JEIT170956
ZHU Haoran, LIU Yunqing, ZHANG Wenying. Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1294-1300. doi: 10.11999/JEIT170956
Citation: ZHU Haoran, LIU Yunqing, ZHANG Wenying. Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1294-1300. doi: 10.11999/JEIT170956

基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合

doi: 10.11999/JEIT170956

Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition

  • 摘要: 在低照度环境下拍摄的可见光图像可视性较差,若将其与红外图像直接融合会导致融合结果清晰度不理想。针对这一问题,该文提出一种基于对比度增强与多尺度边缘保持分解的图像融合方法。首先,在融合之前采用基于导向滤波的自适应增强算法提高可见光图像中暗区内容的可视性。其次,通过一种尺度感知边缘保持滤波器对输入图像进行多尺度分解。再次,应用频率调谐滤波构造显著图。最后,利用由导向滤波生成的权重图重构融合图像。实验结果表明,所提方法不仅可以使细节信息更突出,而且还能够有效地抑制伪影。
  • AKERMAN A. Pyramidal techniques for multi-sensor fusion[J]. SPIE, 1992, 1828: 124-131. doi: 10.1117/12.131644.
    TOET A, VALETON J M, and VAN RUYEN L J. Merging thermal and visual images by a contrast pyramid[J]. Optical Engineering, 1989, 28(7): 789-792. doi: 10.1117/12.7977034.
    SHAO Zhenfeng, LIU Jun, and CHENG Qimin. Fusion of infrared and visible images based on focus measure operators in the curvelet domain[J]. Applied Optics, 2012, 51(12): 1910-1921. doi: 10.1364/AO.51.001910.
    LEWIS J J, OCALLAGHAN R J, NIKOLOV S G, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119-130. doi: 10.1016/j.inffus. 2005.09.006.
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. doi: 10.1109/TIP.2013. 2244222.
    ZHANG Qiong and MALDAGUE X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics Technology, 2016, 74(1): 11-20. doi: 10.1016/j.infrared.2015.11.003.
    RIZZI A, GATTA C, and MARINI D. A new algorithm for unsupervised global and local color correction[J]. Pattern Recognition Letters, 2003, 24(11): 1663-1677. doi: 10.1016/ S0167-8655(02)00323-9.
    温海滨, 毕笃彦, 马时平, 等. 消除阶梯效应与增强细节的变分Retinex红外图像增强算法[J]. 光学学报, 2016, 36(9): 122-131. doi: 10.3788/aos201636.0911005.
    WEN Haibin, BI Duyan, MA Shiping, et al. Variational retinex algorithm for infrared image enhancement with staircase effect suppression and detail enhancement[J]. Acta Optica Sinica, 2016, 36(9): 122-131. doi: 10.3788/aos201636. 0911005.
    TAO Li, NGO Hau, ZHANG Ming, et al. A multisensory image fusion and enhancement system for assisting drivers in poor lighting conditions[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington, 2005: 106-113. doi: 10.1109/AIPR.2005.9.
    LIU Zheng and LAGANIERE R. Context enhancement through infrared vision: A modified fusion scheme[J]. Signal Image and Video Processing, 2007, 1(4): 293-301. doi: 10.1007 /s11760-007-0025-4.
    谢伟, 周玉钦, 游敏. 融合梯度信息的改进引导滤波[J]. 中国图象图形学报, 2016, 21(9): 1119-1126. doi: 10.11834/ jig.20160901.
    XIE Wei, ZHOU Yuqin, and YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119-1126. doi: 10.11834/jig.20160901.
    苏娟, 李冰, 王延钊. 结合PCNN分割和模糊集理论的红外图像增强[J]. 光学学报, 2016, 36(9): 82-90. doi: 10.3788/ aos201636.0910001.
    SU Juan, LI Bing, and WANG Yanzhao. Infrared image enhancement based on PCNN segmentation and fuzzy set theory[J]. Acta Optica Sinica, 2016, 36(9): 82-90. doi: 10.3788 /aos201636.0910001.
    刘峰, 沈同圣, 马新星. 交叉双边滤波和视觉权重信息的图像融合[J]. 仪器仪表学报, 2017, 38(4): 1005-1013. doi: 10.3969/ j.issn.0254-3087.2017.04.027.
    LIU Feng, SHEN Tongsheng, MA Xinxing. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005-1013. doi: 10.3969/j.issn.0254-3087.2017.04.027.
    ZHANG Qi, SHEN Xiaoyong, XU Li, et al. Rolling guidance filter[C]. Proceedings of the 13th European Conference on Computer Vision, Berlin Heidelberg, 2014: 815-830. doi: 10.1007/978-3-319-10578-9_53.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1597-1604. doi: 10.1109/ CVPR.2009.5206596.
    ZHAO Jufeng, FENG Huajun, XU Zhihai, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(2): 45-52. doi: 10.1016/j.optcom.2012.08.070.
    陈震, 杨小平, 张聪炫, 等. 基于补偿机制的NSCT域红外与可见光图像融合[J]. 仪器仪表学报, 2016, 37(4): 860-870. doi: 10.3969/j.issn.0254-3087.2016.04.019.
    CHEN Zhen, YANG Xiaoping, ZHANG Congxuan, et al. Infrared and visible image fusion based on the compensation mechanism in NSCT domain[J]. Chinese Journal of Scientific Instrument, 37(4): 860-870. doi: 10.3969/j.issn.0254-3087. 2016.04.019.
    LIU Yu, LIU Shupeng, and WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24(7): 147-164. doi: 10.1016/j.inffus.2014.09.004.
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127-134. doi: 10.11999/JEIT150616.
    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple- scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics Information Technology, 2016, 38(1): 127-134. doi: 10.11999 /JEIT150616.
  • 加载中
计量
  • 文章访问数:  1670
  • HTML全文浏览量:  255
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回