高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对流层散射超视距信道传输损耗快慢衰落特性研究

卫佩佩 杜晓燕 江长荫

卫佩佩, 杜晓燕, 江长荫. 对流层散射超视距信道传输损耗快慢衰落特性研究[J]. 电子与信息学报, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
引用本文: 卫佩佩, 杜晓燕, 江长荫. 对流层散射超视距信道传输损耗快慢衰落特性研究[J]. 电子与信息学报, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
WEI Peipei, DU Xiaoyan, JIANG Changyin. Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952
Citation: WEI Peipei, DU Xiaoyan, JIANG Changyin. Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1745-1751. doi: 10.11999/JEIT170952

对流层散射超视距信道传输损耗快慢衰落特性研究

doi: 10.11999/JEIT170952
详细信息
    作者简介:

    卫佩佩: 女,1990年生,博士生,研究方向为电波传播、电磁计算及反演问题等. 杜晓燕: 女,1975年生,副教授,主要从事电磁场、微波技术与天线等的教学和科研工作. 江长荫: 男,1936年生,研究员,主要从事无线电波传播研究工作.

  • 中图分类号: TN929.2

Study on Tropospheric Scatter Beyond-line-of-sight Channel Transmission Loss for Short-term and Long-term Fading

  • 摘要: 对流层散射通信是一种地面微波超视距传播的重要手段。针对现有对流层散射传输损耗预测模型无法描述大气环境等因素随机变化问题,该文基于电场强度的快慢衰落特性,首次开展了传输损耗的快慢衰落特性研究,建立了传输损耗分布模型,并结合ITU-R P.617-3给出了该分布待定参数的计算方法。选取了国际电信联盟公布的部分散射链路试验数据,借助正态分布的坐标图纸,验证了该分布模型的有效性,结果表明传播损耗慢衰落特性服从正态分布,可为下一步计算散射链路误码率奠定基础。此外,基于分布模型还提出一种传输损耗预测方法,并利用试验数据验证了所提方法具有较好的精度,克服了现有方法无法计算任意概率传输损耗的问题。
  • ERGIN D and OZGUR B A. A ray-based channel model for MIMO troposcatter communications[C]. 2013 IEEE 24th
    International Symposium on Personal, Indoor and Mobile Radio Communications: Fundamentals and PHY Track, London, UK, 2013: 243-247.
    [2] WEI Peipei, DU Xiaoyan, YU Haiyan, et al. Troposcatter transmission loss subsection model[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 817-818.
    [3] ERGIN D and OZGUR B A. A ray-based channel modeling approach for MIMO troposcatter beyond-Line-of-Sight (b-LoS) communications[J]. IEEE Transactions on Communications, 2015, 63(5): 1690-1699. doi: 10.1109/ TCOMM.2015.2416716.
    ZHANG Minggao. Tropospheric Scattering Propagation[M]. Beijing: Publishing House of Electronics Industry, 2004: 8-52.
    [5] LIU Jiye and CHEN Xihong. Time synchronization for multistatic radar via microwave and troposcatter[J]. IEEE Journal of Engineering, 2017, 1(1): 1-3. doi: 10.1049/joe.2017. 0353.
    CHEN Xihong, LIU Zan, LIU Jiye, et al. Estimating tropospheric slant scatter delay at low elevation[J]. Journal of Electronics & Information Technology, 2016, 38(2): 408-412. doi: 10.11999/JEIT150628.
    WU Wenyi, CHEN Xihong, and LIU Shaowei. Real-time estimation method for tropospheric scatter slant delay at low elevation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1326-1332. doi: 10.11999/JEIT160776.
    [8] LI Lei, LIN Leke, WU Zhensen, et al. Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J]. IET Microwaves, Antennas & Propagation, 2016, 10(6): 686-691. doi: 10.1049/iet-map. 2015.0293.
    [9] BOOKER H G and BETTENCOUR J T. Theory of radio transmission by tropospheric scattering using very narrow beams[J]. Proceedings of the IRE, 1955, 43(3): 281-290. doi: 10.1109/JRPROC.1955.278133.
    [10] SILVERMAN R A. Turbulent mixing theory applied to radio scattering[J]. Journal of Applied Physics, 1956, 27(7): 699-705. doi: 10.1063/1.1722469.
    [11] ERGIN D and OZGUR B A. More than the eye can see coherence time and coherence bandwidth of troposcatter links for mobile receivers[J]. 2015, 10(2): 86-92. doi: 10.1109/ MVT.2015.2410786.
    [12] CCIR Document 5/378. Data banks used for testing prediction methods[R]. [1982-1986].
    [13] LONGLE A G, REASONE R K, and FULLER V L. Measured and predicted long term distribution of tropospheric transmission loss[R]. ITS Report OT/TRER, 1971, 7.
    [14] CCIR Document 5/63. (United Kingdom) Measured transhorizon propagation data[R]. [1982-1986].
    [15] CCIR Document IWP 5/2. Prediction of interfering field strengths at UHF and SHF[R]. 1973.
    [16] NBS Technical Note No.101. Transmission loss predictions for tropospheric Communication Circuits[S]. 1967.
    [17] RECOMMENDATION ITU-R P.617-1. Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems[S]. 1992.
    [18] RECOMMENDATION ITU-R P.617-3. Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems[S]. 2013.
    [19] LI Lei, WU Zhensen, LIN Leke, et al. Study on the prediction of troposcatter transmission loss[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(3): 1071-1079. doi: 10.1109/TAP.2016.2515125.
    LI Lei, ZHAO Zhenwei, WU Zhensen, et al. Conversion model of annual statistics to worst-month statistics of troposcatter [J]. Journal of Communication, 2016, 37(5): 81-87. doi: 10.11959/j.issn.1000-436x.2016095.
    [21] RECOMMENDATION ITU-R P.841-5. Conversion of annual statistics to worst-month satistics[S]. 2016.
    [22] MEADOWS R W. Tropospheric scatter observations at 3480Mc/s with aerials of variable spacing[J]. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 1961: 349-360. doi: 10.1049/pi-b-2.1961.0061. 
    [23] RECOMMENDATION ITU-R P.1057-4. Probability distributions relevant to radiowave propagation modelling[S]. 2015.
    LIU Shengmin and XIONG Zhaofei. Tropospheric Scattering Communication Technology[M]. First Edition. Beijing: National Defense Industry Press, 1982: 57-60.
  • 加载中
计量
  • 文章访问数:  1522
  • HTML全文浏览量:  188
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回