高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向时序感知的多类别商品方面情感分析推荐模型

丁永刚 李石君 付星 刘梦君

丁永刚, 李石君, 付星, 刘梦君. 面向时序感知的多类别商品方面情感分析推荐模型[J]. 电子与信息学报, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
引用本文: 丁永刚, 李石君, 付星, 刘梦君. 面向时序感知的多类别商品方面情感分析推荐模型[J]. 电子与信息学报, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
DING Yonggang, LI Shijun, FU Xing, LIU Mengjun. Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938
Citation: DING Yonggang, LI Shijun, FU Xing, LIU Mengjun. Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938

面向时序感知的多类别商品方面情感分析推荐模型

doi: 10.11999/JEIT170938
基金项目: 

国家自然科学基金(61502350),国家自然科学基金联合基金(U1536114)

Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis

Funds: 

The National Natural Science Foundation of China (61502350), The Joint Funds of National Natural Science foundation of China (U1536114)

  • 摘要: 电子商务网站中的评论数据隐含着商品特征和用户情感,现有基于方面情感分析的推荐研究大多通过抽取同一类别商品评论数据中用户对商品不同方面的情感来捕捉用户方面偏好,忽略了不同类别商品有不同方面以及用户的方面偏好随时间变化的特点。对此,该文提出一种面向时序感知的多类别商品方面情感分析推荐模型,该模型对用户、商品类别、商品、商品方面、方面情感和时间统一建模,以发现用户对不同类别商品的方面偏好随时间变化的特点,并据此做出推荐。该模型能够推断用户在任意时间对商品的方面偏好,从而为用户提供可解释的推荐。两个真实数据集的实验结果表明,与其它基于时间或方面情感分析的推荐模型相比,该文提出的模型在top-N推荐准确率和召回率评价指标上均获得显著改善。
  • PERO and HORVAT T. Opinion-driven matrix factorization for rating prediction[C]. Proceedings of User Mode-ling, Adaptation, and Personalization, Rome, Italy, 2013: 1-13. doi: 10.1007/978-3-642-38844-6_1.
    LEUNG W K, CHAN C F and CHUNG F L. Integrating collaborative filtering and sentiment analysis: A rating inference approach[C]. Proceedings of European Conference on Artificial Intelligence Workshop, Riva del Garda, 2006: 300-307.
    SCHOUTEN K and FRASINCAR F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 813-830. doi: 10.1109/TKDE. 2015.2485209.
    WANG Feng and CHEN Li. Review mining for estimating users ratings and weights for product aspects[J]. Web Intelligence, 2015, 13(3): 137-152. doi: 10.3233/WEB-150317.
    OU W and HUYNH V N. Rating supervised latent topic model for aspect discovery and sentiment classification in on-line review mining[C]. Proceedings of 13th International Conference on Modeling Decisions for Artificial Intelligence, Sant Juli de Lria, Andorra, 2016: 151-164. doi: 10.1007 /978-3- 319-45656-0_13.
    MUSTO C, DE GEMMIS M, SEMERARO G, et al. A multi-criteria recommender system exploiting aspect-based sentiment analysis of users, reviews[C]. Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 321-325. doi: 10.1145/3109859.3109905.
    ZHANG Yongfeng, ZHANG Haochen, and ZHANG Min, et al. Do users rate or review? boost phrase-level sentiment labeling with review-level sentiment classification[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, Australia, 2014: 1027-1030.
    WANG Shuai, CHEN Zhiyuan, and LIU Bing. Mining aspect- specific opinion using a holistic lifelong topic model[C]. Proceedings of the 25th International Conference on World Wide Web, Montreal, Canada, 2016: 167-176. doi: 10.1145/ 2872427.2883086.
    ZHANG Yongfeng, LAI Guokun, ZHANG Min, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]. Proceeding of The 37th International ACM SIGIR Conference on Research Development in Information Retrieval. Gold Coast, Australia, 2014: 83-92. doi: 10.1145/2600428.2609579.
    CHEN Xu, XU Tao, ZHANG Yongfeng, et al. Learning to rank features for recommendation over multiple categories[C]. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa, Italy, 2016: 305-314. doi: 10.1145/2911451.2911549.
    WU Yao and ESTER M. FLAME: A probabilistic model combining aspect based opinion mining and collaborative filtering[C]. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 199-208. doi: 10.1145/2684822.2685291.
    BAUMAN K, LIU Bing, and TUZHILIN A. Aspect based recommendations: recommending items with the most valuable aspects based on user reviews[C]. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 717-725. doi: 10.1145 /3097983.3098170.
    HE Yulan, LIN Chenghua, GAO Wei, et al. Dynamic joint sentiment-topic model[J]. ACM Transactions on Intelligent Systems Technology, 2014, 5(1): 1-21.
    DERMOUCHE M, VELCIN J, KHOUAS L, et al. A Joint model for topic-sentiment evolution over time[C]. Proceedings of 2014 IEEE International Conference on Data Mining, Shenzhen, China, 2014: 773-778. doi: 10.1109/ICDM. 2014.82.
    HU Yan, XU Xiaofei, and LI Li. Analyzing topic-sentiment and topic evolution over time from social media[C]. Proceedings of the 9th International Conference on Knowledge Science, Engineering and Management, Passau, Germany, 2016: 97-109. doi: 10.1007/978-3-319-47650-6_8.
    KOREN Y. Collaborative filtering with temporal dynamics [C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 447-456. doi: 10.1145/1557019.1557072.
    XIONG Liang, CHEN Xi, and HUANG Tzukuo, et al. Temporal collaborative filtering with bayesian probabilistic tensor factorization[C]. Proceedings of the SIAM International Conference on Data Mining, Columbus, USA, 2010: 211-222.
    RAFAILIDIS D and NANOPOULOS A. Modeling users preference dynamics and side information in recommender systems[J]. IEEE Transactions on Systems, Man, Cybernetics: Systems, 2016, 46(6): 782-792.
    LIU Xin. Modeling users, dynamic preference for personalized recommendation[C]. Proceedings of the Twenty- Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 1785-1791. doi: 10.1137/1.9781611972801.19.
    SHANG Yanmin, XU Kefu, ZHANG Chuang, et al. FTM: Recommending the right items for user temporal interests with matrix factorization through topic model[C]. Proceedings of the IEEE First International Conference on Data Science in Cyberspace, Changsha, China, 2017: 189-198. doi: 10.1109/DSC.2016.20.
    MNIH A and SALAKHUTDINOV R. Probabilistic matrix factorization[C]. Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1257-1264.
  • 加载中
计量
  • 文章访问数:  1171
  • HTML全文浏览量:  191
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回