高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于T-分布随机近邻嵌入的聚类集成方法

徐森 花小朋 徐静 徐秀芳 皋军 安晶

田孝华, 廖桂生, 王洪洋. 利用单基站对三维运动目标定位与跟踪[J]. 电子与信息学报, 2004, 26(9): 1364-1370.
引用本文: 徐森, 花小朋, 徐静, 徐秀芳, 皋军, 安晶. 一种基于T-分布随机近邻嵌入的聚类集成方法[J]. 电子与信息学报, 2018, 40(6): 1316-1322. doi: 10.11999/JEIT170937
Tian Xiao-hua, Liao Gui-sheng, Wang Hong-yang. Locating and Tracking of 3-D Moving Targets Using Single Base Station[J]. Journal of Electronics & Information Technology, 2004, 26(9): 1364-1370.
Citation: XU Sen, HUA Xiaopeng, XU Jing, XU Xiufang, GAO Jun, AN Jing. Cluster Ensemble Approach Based on T-distributed Stochastic Neighbor Embedding[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1316-1322. doi: 10.11999/JEIT170937

一种基于T-分布随机近邻嵌入的聚类集成方法

doi: 10.11999/JEIT170937
基金项目: 

国家自然科学基金(61105057, 61375001),江苏省自然科学基金(BK20151299),江苏省产学研前瞻性联合研究项目(BY2016065-01)

Cluster Ensemble Approach Based on T-distributed Stochastic Neighbor Embedding

Funds: 

The National Natural Science Foundation of China (61105057, 61375001), The Natural Science Foundation of Jiangsu Province (BK20151299), The Industry-Education-Research Prospective Project of Jiangsu Province (BY2016065-01)

  • 摘要: 该文将T-分布随机近邻嵌入(TSNE)引入到聚类集成问题中,提出一种基于TSNE的聚类集成方法。首先通过TSNE最小化超图邻接矩阵的行对应的高维数据点与低维映射点分布之间的KL散度,使得高维空间结构在低维空间得以保持,然后在低维空间运行层次聚类算法获得最终的聚类结果。在基准数据集上的实验结果表明: TSNE能够提高层次聚类算法的聚类质量,该文方法获得了优于主流聚类集成方法的结果。
  • JAIN A K, MURTY M N, and FLYNN P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264-323.
    JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
    汪晓锋, 刘功申, 李建华. 基于模糊聚类的多分辨率社区发现方法[J]. 电子与信息学报, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116.
    WANG Xiaofeng, LIU Gongshen, and LI Jianhua. Multiresolution community detection based on fuzzy clustering[J]. Journal of Electronics Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT 161116.
    STREHL A and GHOSH J. Cluster ensembles: A knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3: 583-617.
    ZHOU Zhihua and TANG Wei. Clusterer ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77-83.
    罗会兰, 孔繁胜, 李一啸. 聚类集成中的差异性度量研究[J]. 计算机学报, 2007, 30(8): 1315-1323.
    LUO Huilan, KONG Fansheng, and LI Yixiao. An analysis of diversity measures in clustering ensembles[J]. Chinese Journal of Computers, 2007, 30(8): 1315-1323.
    WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means based consensus clustering: A unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 155-169. doi: 10.1109/TKDE.2014.2316512.
    FRED A and LOURENGO A. Cluster ensemble methods: From single clusterings to combined solutions[J]. Studies in Computational Intelligence, 2008, 126(1): 3-30.
    XU Sen, CHAN Kungsic, Gao Jun, et al. An integrated K-means?Laplacian cluster ensemble approach for document datasets[J]. Neurocomputing, 2016, 214(6): 495-507. doi: 10.1016/j.neucom.2016.06.034.
    YU Zhiwen, LI Le, LIU Jiming, et al. Adaptive noise immune cluster ensemble using affinity propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(12): 3176-3189. doi: 10.1109/TKDE.2015.2453162.
    褚睿鸿, 王红军, 杨燕, 等. 基于密度峰值的聚类集成[J]. 自动化学报, 2016, 42(9): 1401-1412. doi: 10.16383/j.aas.2016. c150864.
    CHU Ruihong, WANG Hongjun, YANG Yan, et al. Clustering ensemble based on density peaks[J]. Acta Automatica Sinica, 2016, 42(9): 1401-1412. doi: 10.16383/ j.aas.2016.c150864.
    BERIKOV V and PESTUNOV I. Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties[J]. Pattern Recognition, 2017, 63: 427-436. doi: 10.1016/j.patcog.2016.10.017.
    MAATEN L V D and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
    MAATEN L V D. Learning a parametric embedding by preserving local structure[C]. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, Florida, USA, 2009: 384-391.
    MAATEN L V D. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014, 15(1): 3221-3245.
    SALTON G and BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing and Management, 1998, 24(5): 513-523.
    FERN X Z and LIN W. Cluster ensemble selection[J]. Statistical Analysis Data Mining, 2008, 1(3): 128-141.
    ZHAO Xingwang, LIANG Jiye, and DANG Chuangyin. Clustering ensemble selection for categorical data based on internal validity indices[J]. Pattern Recognition, 2017, 69(4): 150-168. doi: 10.1016/j.patcog.2017.04.019.
  • 期刊类型引用(10)

    1. 李浩浩,桑胜波,杨琨. 基于BP神经网络的血压监测算法. 电子设计工程. 2023(07): 113-118 . 百度学术
    2. 林冬梅,张育儒,陈晓雷,杨富龙,王敬阳. 基于USB-4221数据采集卡的连续血压测量. 中国医学物理学杂志. 2021(05): 606-612 . 百度学术
    3. 张畅,陈辉,郑秀娟. 基于优化脉搏波特征的无袖带血压检测方法. 电子测量技术. 2021(24): 1-7 . 百度学术
    4. 付莹. 无创连续血压测量技术的研究进展分析. 中国医疗器械信息. 2020(02): 11+89 . 百度学术
    5. 郑嘉强,程云章,边俊杰. 基于脉搏波特征参数的无创连续血压测量研究进展. 中国医学物理学杂志. 2020(06): 749-753 . 百度学术
    6. 高凤梅,吴攀. 基于嵌入式AI的可穿戴健康管理系统设计. 现代信息科技. 2020(15): 95-97 . 百度学术
    7. 王辉. 用无创呼吸机治疗冠心病致急性心力衰竭的研究进展观察. 中国医疗器械信息. 2019(08): 16-17 . 百度学术
    8. 韩团军,尹继武,王楷,赵增群. 基于FPGA的无线动态心电监护系统设计. 电子器件. 2019(04): 1041-1045 . 百度学术
    9. 李思楠,赵海. 基于多传感器的人体生理状态判别可视化技术. 传感器与微系统. 2019(12): 25-28+32 . 百度学术
    10. 丑永新,祁春阳,金逸,张瑞雷,顾亚. 基于Hilbert-Huang变换的脉率变异性提取方法. 中国医学物理学杂志. 2018(04): 425-430 . 百度学术

    其他类型引用(14)

  • 加载中
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  269
  • PDF下载量:  158
  • 被引次数: 24
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2018-03-16
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回