高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐射式仿真中脉冲雷达ISAR成像等效模拟方法

刘晓斌 刘进 刘光军 赵锋 王国玉

刘晓斌, 刘进, 刘光军, 赵锋, 王国玉. 辐射式仿真中脉冲雷达ISAR成像等效模拟方法[J]. 电子与信息学报, 2018, 40(7): 1553-1560. doi: 10.11999/JEIT170931
引用本文: 刘晓斌, 刘进, 刘光军, 赵锋, 王国玉. 辐射式仿真中脉冲雷达ISAR成像等效模拟方法[J]. 电子与信息学报, 2018, 40(7): 1553-1560. doi: 10.11999/JEIT170931
LIU Xiaobin, LIU Jin, LIU Guangjun, ZHAO Feng, WANG Guoyu. Equivalent Simulation Method for Pulse Radar ISAR Imaging in Radio Frequency Simulation[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1553-1560. doi: 10.11999/JEIT170931
Citation: LIU Xiaobin, LIU Jin, LIU Guangjun, ZHAO Feng, WANG Guoyu. Equivalent Simulation Method for Pulse Radar ISAR Imaging in Radio Frequency Simulation[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1553-1560. doi: 10.11999/JEIT170931

辐射式仿真中脉冲雷达ISAR成像等效模拟方法

doi: 10.11999/JEIT170931
基金项目: 

国家自然科学基金(61101180, 61401491, 61490692)

详细信息
    作者简介:

    刘晓斌: 男,1990年生,博士生,研究方向为雷达信号处理、雷达系统仿真技术. 刘 进: 男,1981年生,讲师,研究方向为雷达极化信息处理、微动目标特征提取与识别、电子信息系统建模与仿真.

  • 中图分类号: TN959.1

Equivalent Simulation Method for Pulse Radar ISAR Imaging in Radio Frequency Simulation

Funds: 

The National Natural Science Foundation of China (61101180, 61401491, 61490692)

  • 摘要: 脉冲雷达信号广泛用于逆合成孔径雷达(ISAR)成像。在辐射式仿真中采用脉冲雷达信号进行ISAR成像时,由于脉宽对应的传播距离远大于微波暗室的空间长度,脉冲回波会在发射信号未被完全辐射之前返回接收机,使得收发信号相互耦合,难以得到ISAR图像。该文提出基于间歇收发的脉冲雷达ISAR成像等效模拟方法,通过将脉冲信号分段发射、分段接收,得到分段稀疏的目标回波。然后,结合压缩感知与间歇收发回波,重构得到ISAR图像。根据等效模拟的实现流程,对仿真与实测数据进行分析,结果表明,该等效模拟方法所得ISAR图像与完整脉冲回波所得图像基本一致,从而验证了等效模拟方法的有效性。
  • 刘记红, 徐少坤, 韩国强. 等. 基于压缩感知的进动目标ISAR成像方法[J]. 雷达科学与技术, 2017, 15(4): 403-409.

    doi: 10.3969/j.issn.1672-2337.2017.04.012.
    LIU Jihong, XU Shaokun, HAN Guoqiang, et al. ISAR imaging method for precession targets based on compressed sensing[J]. Radar Science and Technology, 2017, 15(4): 403-409. doi: 10.3969/j.issn.1672-2337.2017.04.012.
    [2] OLIN I D and QUEEN F D. Dynamic measurement of radar cross sections[J]. Proceedings of the IEEE, 1965, 53(8): 954-961. doi: 10.1109/PROC.1965.4074.
    [3] O’DONNELL A N, WILSON J L, KOLTENUK D M, et al. Compressed sensing for radar signature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2631-2639. doi: 10.1109/TAES.2013.6621841.
    [4] LIU Jin, LI Gaosheng, MA Liang, et al. Dynamic measurement of micro-motion targets in microwave anechoic chamber[C]. IET International Radar Conference, Guilin, China, 2009: 1-4. doi: 10.1049/cp.2009.0259.
    YE Taoshan, HUANG Peilin, SHU Changyong, et al. Scattering characteristics simulation and experimental analysis of precession cone target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 588-595. doi: 10.13700/j.bh.1001-5965.2015.0141.
    [6] LIU Jin, WU Qihua, AI Xiaofeng, et al. Experimental study on full-polarization micro-doppler of space precession target in microwave anechoic chamber[C]. Sensor Signal Processing for Defence (SSPD), Ediburgh, UK, 2016: 1-5. doi: 10.1109 /SSPD.2016.7590599.
    [7] HE Weichao, ZHANG Linxi, and LI Nanjing. A new method to improve precision of target position in RFS[C]. International Conference on Microwave and Millimeter Wave Technology, Guilin, China, 2007: 1-3. doi: 10.1109/ICMMT. 2007.381335.
    [8] LIU Xiaobin, LIU Jin, ZHAO Feng, et al. An equivalent simulation method for pulse radar measurement in anechoic chamber[J]. IEEE Geoscience Remote Sensing Letters, 2017, 14(7): 1081-1085. doi: 10.1109/LGRS.2017.2697678.
    [9] NIROOJAZI M, DENIDNI T A, CHAHARMIR M R, et al. A hybrid isolator to reduce electromagnetic interactions between Tx/Rx antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(1): 75-78. doi: 10.1109/LAWP. 2013.2296139.
    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China, Series E: Information Sciences, 2006, 36(8): 891-901. doi: 10.3321/j.issn:1006-9275. 2006.08.007.
    [11] PAN Xiaoyi, WANG Wei, FENG Dejun, et al. On deception jamming for countering bistatic ISAR based on sub-Nyquist sampling[J]. IET Radar Sonar Navigation, 2014, 8(3): 173-179. doi: 10.1049/iet-rsn.2013.0020.
    [12] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace Electronic Systems, 2017, 53(3): 1341-1354. doi: 10.1109/TAES.2017.2670958.
    [13] BAHER S H S and KASTANTIN R. Technique to counter active echo cancellation of self-protection ISRJ[J]. Electronics Letters, 2017, 53(10): 680-681. doi: 10.1049/el.2017.0617.
    LI Shaodong, YANG Jun, CHEN Wenfeng, et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics & Information Technology, 2016, 38(2): 495-508. doi: 10.11999/ JEIT150874.
    [15] TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    HOU Yingni, LI Daojing, HONG Wen, et al. Thinned array imaging experimental study in anechoic chamber[J]. Journal of Electronics & Information Technology, 2010, 30(9): 2258-2262. doi: 10.3724/SP.J.1146.2009.01135
    [17] CAO Pan, XING Mengdao, SUN Guangcai, et al. Minimum entropy via subspace for ISAR autofocus[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 205-209. doi: 10.1109 /LGRS.2009.2031658.
  • 加载中
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  119
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2018-03-21
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回