高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态效用的时空众包在线任务分配

余敦辉 张灵莉 付聪

余敦辉, 张灵莉, 付聪. 基于动态效用的时空众包在线任务分配[J]. 电子与信息学报, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
引用本文: 余敦辉, 张灵莉, 付聪. 基于动态效用的时空众包在线任务分配[J]. 电子与信息学报, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
YU Dunhui, ZHANG Lingli, FU Cong. Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
Citation: YU Dunhui, ZHANG Lingli, FU Cong. Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930

基于动态效用的时空众包在线任务分配

doi: 10.11999/JEIT170930
基金项目: 

国家重点基础研究发展计划(2014CB340404),国家自然科学基金(61373037, 61672387)

详细信息
    作者简介:

    余敦辉: 男,1974年生,副教授,研究方向为服务计算、大数据. 张灵莉: 女,1993年生,硕士生,研究方向为大数据. 付 聪: 男,1991年生,硕士生,研究方向为大数据.

  • 中图分类号: TP393

Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility

Funds: 

The National Key Basic Research and Department Program of China (2014CB340404), The National Natural Science Foundation of China (61373037, 61672387)

  • 摘要: 为提升众包任务在线分配的总体效用,该文提出一种适用于时空众包环境的在线任务分配方法。该方法针对时空众包环境下的在线任务分配问题,首先提出一种以众包任务为中心的K最近邻算法来进行候选众包工人的选择,进而设计一种基于动态效用的阈值选择算法,实现众包工人与任务的最优分配。实验结果显示,文中所提出算法具有较好的有效性和可行性,并能在一定程度上保证众包工人的可靠性,优化平台总效益。
  • [2] BRABHAM D C. Crowdsourcing the public participation process for planning projects[J]. Planning Theory, 2009, 8(3): 242-262.
    HOWE J. The rise of crowdsourcing[J]. Wired Magazine, 2016, 14(6): 1-4.
    RUI Lanlan, ZHANG Pan, HUANG Haoqiu, et al. Reputation-based incentive mechanisms in crowdsourcing [J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095.
    SHI Zhan, XIN Yu, SUN Yue, et al. An allocation mechanism based on the reliability of users for crowdsourcing systems[J]. Journal of Computer Applications, 2017, 37(9): 2449-2453.
    FENG Jianhong. Key techniques of crowdsourced query processing[D]. [Ph.D. dissertation], Tinghua University, 2015.
    [6] LI Yu, YIU Manlung, and XU Wenjian. Oriented online route recommendation for spatial crowdsourcing task workers[C]. 14th International Symposium on Advances in Spatial and Temporal Database, SSTD 2015, HongKong, China, 2015: 137-156. doi: 10.1007/978-3-319-22363-6_8.
    TONG Yongxin, YUAN Ye, CHENG Yurong, et al. Survey on spatiotemporal crowdsourced data management tecllniques[J]. Journal of Software, 2017, 28(1): 35-58. doi: 10.13328/j.cnki.jos.005140.
    SONG Tianshu, TONG Yongxin, WANG Libin, et al. Online task assignment for three types of objects under spatial crowdsourcing environment[J]. Journal of Software, 2017, 28(3): 611-630. doi: 10.13328/j.cnki.jos.005166.
    [9] CHENG Peng, LIAN Xiang, CHEN Lei, et al. Task assignment on multi-skill oriented spatial crowdsourcing[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(8): 2201-2215. doi: 10.1109/TKDE.2016.2550041.
    [10] HASSAN U U and CURRY E. Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning[J]. Expert Systems with Applications, 2016, 58: 36-56.
    [11] TONG Yongxin, SHE Jieying, DING Bolin, et al. Online mobile micro-task allocation in spatial crowdsourcing[C]. 2016 IEEE 32nd International Conference on Data Engineering, 2016: 49-60. doi: 10.1109/ICDE.2016.7498228.
    [12] XUE Andyyuan, ZHANG Rui, ZHENG Yu, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction[C]. 2013 IEEE 29th International Conference on Data Engineering, 2013: 254-265. doi: 10.1109/ICDE.2013.6544830.
    YANG Hang. Research on prediction of trajectories of moving objects based on historical information[D]. [Master dissertation], Guangxi Normal University, 2016.
    SONG Xiaoyu, SUN Yeting, and SUN Huanliang. CYPK- KNN: A modified monitoring KNN queries over moving objects algorithm[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(6): 1004-1007.
    DENG Bin. K-nearnest neighbors query algorithm in weighted uncertain graph[D]. [Master dissertation], Shanghai Ocean University, 2015.
    NIU Jianguang, CHEN Luo, ZHAO Liang, et al. Processing continuous K nearest neighbor queries on highly dynamic moving objects[J]. Computer Science, 2011, 38(3): 182-186.
  • 加载中
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  225
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2018-04-08
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回