高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏贝叶斯学习的码元速率估计

金艳 田田 姬红兵

金艳, 田田, 姬红兵. 基于稀疏贝叶斯学习的码元速率估计[J]. 电子与信息学报, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
引用本文: 金艳, 田田, 姬红兵. 基于稀疏贝叶斯学习的码元速率估计[J]. 电子与信息学报, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906
Citation: JIN Yan, TIAN Tian, JI Hongbing. Symbol Rate Estimation Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603. doi: 10.11999/JEIT170906

基于稀疏贝叶斯学习的码元速率估计

doi: 10.11999/JEIT170906
基金项目: 

国家自然科学基金(61201286),陕西省自然科学基金(2014JMS304)

详细信息
    作者简介:

    金艳:金 艳: 女,1978年生,博士,副教授,硕士生导师,研究方向为现代信号处理、统计信号处理、信号参数估计、通信信号侦测等. 田 田: 女,1993年生,硕士生,研究方向为信号参数估计、脉冲噪声处理. 姬红兵: 男,1963年生,博士,教授,博士生导师,主要研究方向为光电信息处理、微弱信号检测与识别、医学影像处理等.

  • 中图分类号: TN911.72

Symbol Rate Estimation Based on Sparse Bayesian Learning

Funds: 

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shannxi Province (2014JMS304)

  • 摘要: 现有的相位编码信号码元速率估计方法在样本点足够多的情况下才能准确估计出参数,且算法复杂度高。针对此问题,该文详细分析了BPSK信号的结构特征,并以此为先验信息对其循环自相关(CA)向量进行压缩采样,降低了传统贝叶斯复数处理方法的维度。利用压缩传感中离散傅里叶变换矩阵的奇偶性,分解传感矩阵为正弦和余弦变换,分别将CA向量的实虚部转换到对应变换域测量,根据复数信号实虚部具有相同支撑集这一特点,采用多任务稀疏贝叶斯重构时延积向量的单边谱分量,从而估计出码元频率。理论分析和仿真结果表明,相较于其它基于稀疏贝叶斯学习的参数估计算法,所提方法在测量数量较少的情况下也能准确估计出循环频率,且算法实时性显著提高。
  • [2] YILDIRIM A. Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2017, 10(9): 1073-1081. doi: 10.1049/iet-spr.2016.0237.
    JIN Yan, and JI Hongbing. Robust symbol rate estimation of PSK signals under the cyclostationary framework[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 599-612. doi: 10.1007/s00034-013-9639-7.
    [3] GARDNER W. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36. doi: 10.1109/79.81007.
    [4] DIKMESE S, ILYAS Z, SOFOTASIOS P C, et al. Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(1): 159-172. doi: 10.1109 /JSAC.2016.2633058.
    [5] KHALAF Z and PALICOT J. New Blind Free-Band Detectors Exploiting Cyclic Autocorrelation Function Sparsity[M]. Switzerland: Springer International Publishing, 2014: 91-117.
    [6] BOLLIG A and MATHAR R. Dictionary-based reconstruction of the cyclic autocorrelation via l1-minimization for cyclostationary spectrum sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 4908-4912. doi: 10.1109/ICASSP.2013.6638594.
    [7] CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. Gridless sparse reconstruction for the cyclic autocorrelation estimation[C]. IEEE International Conference on Advanced Communication Technology, Pyeongchang, South Korea, 2016: 254-259. doi: 10.1109/ICACT.2016. 7423349.
    LIU Fang, WU Jiao, YANG Shuyuan, et al. Research advances on structured compressive sensing[J]. Acta Automatica Sinica, 2013, 39(12): 1980-1995. doi: 10.3724/ SP.J.1004.2013.01980.
    [9] TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. doi: 10.1162/15324430152748236.
    [10] HUANG X, ZHAO Q, JIANG W, et al. Frequency estimation of cyclic spectrum carrier based on compressive sampling of BPSK signal[C]. IET International, Radar Conference, Hangzhou, China, 2015: 1-4. doi: 10.1049/cp.2015.1373.
    [11] KHALAF Z, NAFKHA A, and PALICOT J. Blind spectrum detector for cognitive radio using compressed sensing and symmetry property of the second order cyclic autocorrelation [C]. IEEE International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications, Stockholm, Sweden, 2012: 291-296. doi: 10.4108/icst. crowncom.2012.248133.
    [12] WU Qisong, ZHANG Yimin D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3375-3379. doi: 10.1109/ ICASSP.2014.6854226.
    WANG Wei, TANG Weimin, WANG Ben, et al. Sparse signal recovery based on complex bayesian compressive sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056.
    ZHAO Shujie and ZHAO Jianxun. Signal Detection and Estimation Theory[M]. Beijing: Publishing House of Electronics Industry, 2013: 129-139.
    [15] JI Shihao, DUNSON D, and CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92-106. doi: 10.1109/TSP.2008. 2005866.
    [16] GIRI R and RAO B. Type I and Type II Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3418-3428. doi: 10.1109/TSP.2016.2546231.
  • 加载中
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  287
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2018-03-14
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回