高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金字塔分解和扇形局部均值二值模式的鲁棒纹理分类方法

宋铁成 罗林 张刚 罗忠涛 张天骐

宋铁成, 罗林, 张刚, 罗忠涛, 张天骐. 基于金字塔分解和扇形局部均值二值模式的鲁棒纹理分类方法[J]. 电子与信息学报, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884
引用本文: 宋铁成, 罗林, 张刚, 罗忠涛, 张天骐. 基于金字塔分解和扇形局部均值二值模式的鲁棒纹理分类方法[J]. 电子与信息学报, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884
SONG Tiecheng, LUO Lin, ZHANG Gang, LUO Zhongtao, ZHANG Tianqi. Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884
Citation: SONG Tiecheng, LUO Lin, ZHANG Gang, LUO Zhongtao, ZHANG Tianqi. Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884

基于金字塔分解和扇形局部均值二值模式的鲁棒纹理分类方法

doi: 10.11999/JEIT170884
基金项目: 

国家自然科学基金(61702065, 61671095),信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003)

Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern

Funds: 

The National Natural Science Foundation of China (61702065, 61671095), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009 CA2003)

  • 摘要: 针对传统局部二值模式(LBP)的特征鉴别力有限和噪声敏感性问题,该文提出一种基于金字塔分解和扇形局部均值二值模式的纹理特征提取方法。首先,将原始图像进行金字塔分解,得到对应于不同分解级别的低频和高频(差分)图像。为提取兼具鉴别力和稳健性的特征,进一步采用阈值化处理技术将高频图像转化为正、负高频图。然后,基于局部均值操作提出一种扇形局部均值二值模式(SLMBP),用于计算各级分解图像的纹理特征码。最后,对纹理特征码进行跨频带的联合编码和跨级别的直方图加权,从而获得最终的纹理特征。在公开的3个纹理数据库(Outex, Brodatz和UIUC)上进行分类实验,结果表明该文所提方法能够有效地提高纹理图像在无噪声环境和含高斯噪声环境下的分类精度。
  • WEN Dengwei, ZHANG Dongbo, TANG Hongzhong, et al. HEp-2 cell classification by fusing texture and shape features [J]. Journal of Electronics Information Technology, 2017, 39(7): 1599-1605. doi: 10.11999/JEIT161090.
    文登伟, 张东波, 汤红忠, 等. 融合纹理与形状特征的HEp-2细胞分类[J]. 电子与信息学报, 2017, 39(7): 1599-1605. doi: 10. 11999/JEIT161090.
    AL-SAHAF H, AL-SAHAF A, XUE B, et al. Automatically evolving rotation-invariant texture image descriptors by genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 83-101. doi: 10.1109/TEVC.2016. 2577548.
    JIA S, HU J, ZHU J S, et al. Three-dimensional local binary patterns for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2399-2413. doi: 10.1109/TGRS.2016.2642951.
    SONG T C, LI H L, MENG F M, et al. Exploring space- frequency co-occurrences via local quantized patterns for texture representation[J]. Pattern Recognition, 2015, 48(8): 2621-2632. doi: 10.1016/j.patcog.2015.03.003.
    WANG H, SANG M Y, HAN D K, et al. A feature descriptor based on the local patch clustering distribution for illumination-robust image matching[J]. Pattern Recognition Letters, 2017, 94: 46-54. doi: 10.1016/j.patrec.2017.05.010.
    LIU L, FIEGUTH P W, GUO Y L, et al. Local binary features for texture classification: Taxonomy and experimental study[J]. Pattern Recognition, 2017, 62: 135-160. doi: 10.1016/j.patcog.2016.08.032.
    OJALA T, PIETIKNEN M, and MENP T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109 /TPAMI.2002.1017623.
    GUO Z H and ZHANG L. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663. doi: 10.1109/TIP.2010.2044957.
    PAN Z B, LI Z Y, FAN H C, et al. Feature based local binary pattern for rotation invariant texture classification[J]. Expert Systems with Applications, 2017, 88(12): 238-248. doi: 10.1016/j.eswa.2017.07.007.
    SONG T C, LI H L, MENG F M, et al. Noise-robust texture description using local contrast patterns via global measures[J]. IEEE Signal Processing Letters, 2014, 21(1): 93-96. doi: 10.1109/LSP.2013.2293335.
    REN J F, JIANG X D, and YUAN J S. Noise-resistant local binary pattern with an embedded error-correction mechanism [J]. IEEE Transactions on Image Processing, 2013, 22(10): 4049-4060. doi: 10.1109/TIP.2013.2268976.
    LIU L, LONG Y, FIEGUTH P W, et al. BRINT: Binary rotation invariant and noise tolerant texture classification[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3071-3084. doi: 10.1109/TIP.2014.2325777.
    ZHANG M and GUNTURK B K. Multiresolution bilateral filtering for image denoising[J]. IEEE Transactions on Image Processing, 2008, 17(12): 2324-2333. doi: 10.1109/TIP.2008. 2006658.
    ZHAO Y, JIA W, HU R X, et al. Completed robust local binary pattern for texture classification[J]. Neurocomputing, 2013, 106(4): 68-76. doi: 10.1016/j.neucom.2012.10.017.
    ZHAO Y, HUANG D S, and JIA W. Completed local binary count for rotation invariant texture classification[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4492-4497. doi: 10.1109/TIP.2012.2204271.
    TAN X Y and TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650. doi: 10.1109/TIP.2010.2042645.
    HE J, JI H, and YANG X. Rotation invariant texture descriptor using local shearlet-based energy histograms[J]. IEEE Signal Processing Letters, 2013, 20(9): 905-908. doi: 10.1109/LSP.2013.2267730.
    KHELLAH F M. Texture classification using dominant neighborhood structure[J]. IEEE Transactions on Image Processing, 2011, 20(11): 3270-3279. doi: 10.1109/TIP.2011. 2143422.
    SHAKOOR M H and TAJERIPOUR F. Noise robust and rotation invariant entropy features for texture classification [J]. Multimedia Tools and Applications, 2017, 76(6): 8031-8066. doi: 10.1007/s11042-016-3455-6.
  • 加载中
计量
  • 文章访问数:  1474
  • HTML全文浏览量:  142
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 修回日期:  2018-02-01
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回