高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层建筑室内无线网络的协作安全研究

戚晓慧 黄开枝 钟智豪 金梁 季新生

戚晓慧, 黄开枝, 钟智豪, 金梁, 季新生. 多层建筑室内无线网络的协作安全研究[J]. 电子与信息学报, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874
引用本文: 戚晓慧, 黄开枝, 钟智豪, 金梁, 季新生. 多层建筑室内无线网络的协作安全研究[J]. 电子与信息学报, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874
QI Xiaohui, HUANG Kaizhi, ZHONG Zhihao, JIN Liang, JI Xinsheng. Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874
Citation: QI Xiaohui, HUANG Kaizhi, ZHONG Zhihao, JIN Liang, JI Xinsheng. Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874

多层建筑室内无线网络的协作安全研究

doi: 10.11999/JEIT170874
基金项目: 

国家自然科学基金(61379006, 61471396, 61601514, 61501516, 61521003)

Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks

Funds: 

The National Natural Science Foundation of China (61379006, 61471396, 61601514, 61501516, 61521003)

  • 摘要: 多层建筑室内无线网络安全问题的特殊性,主要由其具有随机性、动态性和复杂性的空间拓扑结构所引起的。针对多层室内无线网络节点分布随机、空间结构复杂、损耗类型多样等特点,该文结合物理层安全与随机几何理论,对多层室内无线网络中的多节点协作安全传输展开研究。首先,基于多层泊松点过程对K层室内无线网络进行建模;在此基础上,将协作传输引入多层室内无线网络,并提出该网络的安全概率分析框架;随后,结合理论推导及仿真,分析了楼层总数、安全速率门限、用户所处楼层和各层发射功率配置等因素对多层室内无线网络安全性能的影响。最后,通过仿真验证了协作传输能够有效提高室内无线网络的安全性能。
  • CHANDRASEKHAR V, ANDREWS J G, and GATHERER A. Femtocell networks: A survey[J]. IEEE Communications Magazine, 2008, 46(9): 59-67. doi: 10.1109/MCOM2008. 4623708.
    WANG Y, MIAO Z, and JIAO L. Safeguarding the Ultra-dense networks with the aid of physical layer security: A review and a case study[J]. IEEE Access, 2017, 4: 9082-9092. doi: 10.1109/ACCESS.2016.2635698.
    YAN S, PENG M, CHEN W, et al. Downlink heterogeneous small cell networks with cell associations in k-floor indoor scenarios[C]. IEEE International Conference on Communication Workshop (ICCW), London, UK, 2015: 151-154.
    WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. doi: 10.1002/ j.1538-7305.1975.tb02040.x.
    LIU Y, QIN Z, ELKASHLAN M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1656-1672. doi: 10.1109/TWC. 2017.2650987.
    OUYANG N, JIANG X Q, BAI E, et al. Destination assisted jamming and beamforming for improving the security of AF relay systems[J]. IEEE Access, 2017, 5: 4125-4131. doi: 10.1109/ACCESS.2017.2682838.
    LI B, FEI Z, and CHEN H. Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay networks[J]. IEEE Access, 2016, 4: 7921-7929. doi: 10.1109/ACCESS.2016.2627002.
    GUO H, YANG Z, ZHANG L, et al. Power-constrained secrecy rate maximization for joint relay and jammer selection assisted wireless networks[J]. IEEE Transactions on Communications, 2017, 65(5): 2180-2193. doi: 10.1109/ TCOMM.2017.2651066.
    XU M, TAO X, YANG F, et al. Enhancing secured coverage with CoMP transmission in heterogeneous cellular networks [J]. IEEE Communications Letters, 2016, 20(11): 2272-2275. doi: 10.1109/LCOMM.2016.2598536.
    WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks[J]. IEEE Transactions on Information Forensics Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017.2663336.
    WANG H M, ZHENG T X, YUAN J, et al. Physical layer security in heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2016, 64(3): 1204-1219. doi: 10.1109/TCOMM.2016.2519402.
    LI N, TAO X, WU H, et al. Large-system analysis of artificial-noise-assisted communication in the multiuser downlink: Ergodic secrecy sum rate and optimal power allocation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7036-7050. doi: 10.1109/TVT.2015.2493178.
    PAN Z and ZHU Q. Modeling and analysis of coverage in 3-D cellular networks[J]. IEEE Communications Letters, 2015, 19(5): 831-834. doi: 10.1109/LCOMM.2015.2411599.
    LEE J, ZHANG X, and BACCELLI F. A 3-D spatial model for in-building wireless networks with correlated shadowing [J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7778-7793. doi: 10.1109/TWC.2016.2607206.
    ZHANG Y, XU W, and LI X. Multi-floor PPP model for performance analysis of indoor wireless networks[C]. IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), Shenzhen, China, 2016: 371-376.
    OMRI A and HASNA M O. Modelling and performance analysis of 3-D heterogeneous networks with interference management[J]. IEEE Communications Letters, 2017, 21(8): 1787-1790. doi: 10.1109/LCOMM.2017.2695609.
    SEIDEL S Y and RAPPAPORT T S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings[J]. IEEE Transactions on Antennas Propagation, 1992, 40(2): 207-217. doi: 10.1109/8.127405.
  • 加载中
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  113
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回