[2] GOYAL V, PANDEY O, SAHAI A, et al. Attribute-based encryption for fine grained access control of encrypted data[C]. Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, USA, 2006: 89-98. doi: 10.1145/1180405.1180418.
|
SAHAI A and WATERS B. Fuzzy identity-based encryption [C]. Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 2005: 457-473. doi: 10.1007/11426639_27.
|
ZHAO Jian. Research on attribute-based encryption from lattices[D]. [Master dissertation], The PLA Information Engineering University, 2015: 4-7.
|
[4] MALLUHI Q, SHIKFA A, and TRINH V. A ciphertext- policy attribute-based encryption scheme with optimized ciphertext size and fast decryption[C]. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2017: 230-240. doi: 10.1145/3052973.3052987.
|
[5] AJTAI M. Generating hard instances of lattice problems (extend abstract)[C]. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 99-108. doi: 10.1145/237814.237838.
|
[6] GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, 2008: 197-206. doi: 10.1145/1374376.1374407.
|
[8] ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homomorphic encryption schemes: Theory and implementation[OL]. https://arxiv.org/pdf/1704.03578.pdf, 2017.
|
[9] LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings [J]. Journal of the ACM, 2010, 60(6): 1-35. doi: 10.1145/2535925.
|
[10] LYUBASHEVSKY V, PEIKERT C, and REGEV O. A toolkit for ring-LWE cryptography[C]. Advances in CryptologyThe 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, 2013: 35-54. doi: https://doi.org/10.1007 /978-3-642-38348-9_3.
|
WU Liqiang, YANG Xiaoyuan, and HAN Yiliang. An efficient FIBE scheme based on ideal lattices[J]. Chinese Journal of Computers, 2015, 38(4): 775-782. doi: 10.3724/ SP.J.1016. 2015.00775.
|
[12] SUN Lei, WANG Shuaili, LI Zuohui, et al. Large universe ciphertext-policy attribute-based encryption with efficient revocation[C]. Advances in Engineering ResearchThe 2nd International Conference on Electrical, Automation and Mechanical Engineering, Shanghai, China, 2017: 243-249. doi: 10.2991/eame-17.2017.58.
|
[13] NING Jianting, DONG Xiaolei, GAO Zhenfu, et al. White- box traceable ciphertext-policy attribute-based encryption supporting flexible attributes[J]. IEEE Transactions on Information Forensics & Security, 2017, 10(6): 1274-1288. doi: 10.1109/TIFS.2015.2405905.
|
[14] HU Peng and GAO Haiying. Ciphertext-policy attribute- based encryption for general circuits from bilinear maps[J]. Wuhan University Journal of Natural Sciences, 2017, 22(2): 171-177. doi: 10.1007/s11859-017-1231-8.
|
[15] ODELU V, DAS A, RAO Y, et al. Pairing-based CP-ABE with constant-size ciphertexts and secret keys for cloud environment[J]. Computer Standards & Interfaces, 2017, 54(1): 3-9. doi: 10.1016/j.csi.2016.05.002.
|
[16] ZHANG Jiang, ZHANG Zhenfeng, and GE Aijun. Ciphertext policy attribute-based encryption from lattices[C]. Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, Seoul, Korea, 2012: 16-17. doi: 10.1145/2414456.2414464.
|
[17] AGRAWAL S, BOYEN X, VAIKUNTANATHAN V, et al. Fuzzy identity based encryption from lattices[C]. Proceedings of the 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 280-297. doi: 10.1007/978-3-642-30057-8_17.
|
[18] STEHLÉ D, STEINFELD R, TANAKA K, et al. Efficient public key encryption based on ideal lattices[C]. Advances in CryptologyThe 15th Annual International Conference on the Theory and Application of Cryptology & Information Security, Tokyo, Japan, 2009: 617-635. doi: https://doi.org/ 10.1007/978-3-642-10366-7_36.
|
[19] MICCIANCIO D and REGEV O. Worst-case to average-case reductions based on Gaussian measures[J]. SIAM Journal on Computing, 2007, 37(1): 267-302. doi: 10.1137/ S0097539705 447360.
|