高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子滤波与样本加权的压缩跟踪算法

张红颖 王赛男 胡文博

张红颖, 王赛男, 胡文博. 基于粒子滤波与样本加权的压缩跟踪算法[J]. 电子与信息学报, 2018, 40(6): 1397-1403. doi: 10.11999/JEIT170854
引用本文: 张红颖, 王赛男, 胡文博. 基于粒子滤波与样本加权的压缩跟踪算法[J]. 电子与信息学报, 2018, 40(6): 1397-1403. doi: 10.11999/JEIT170854
ZHANG Hongying, WANG Sainan, HU Wenbo. Compressive Tracking Algorithm Based on Particle Filter and Sample Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1397-1403. doi: 10.11999/JEIT170854
Citation: ZHANG Hongying, WANG Sainan, HU Wenbo. Compressive Tracking Algorithm Based on Particle Filter and Sample Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1397-1403. doi: 10.11999/JEIT170854

基于粒子滤波与样本加权的压缩跟踪算法

doi: 10.11999/JEIT170854
基金项目: 

天津市自然科学基金青年基金(12JCQNJC00600),中央高校基本科研业务费(3122015C016),国家自然科学基金民航联合研究基金(U1533203)

Compressive Tracking Algorithm Based on Particle Filter and Sample Weighting

Funds: 

The Natural Science Foundation of Tianjin (12JCQNJC00600), The Fundamental Research Funds for the Central Universities (3122015C016), The National Natural Science Foundation of China (U1533203)

  • 摘要: 该文针对压缩跟踪算法无法适应目标尺度的变化以及没有考虑样本权重的问题,提出一种基于粒子滤波与样本加权的压缩跟踪算法。首先,对压缩特征进行改进,提取归一化矩形特征用于构建目标表观模型。然后,引入样本加权的思想,根据正样本与目标之间距离的不同赋予正样本不同的权重,提高分类器的分类精度。最后,在粒子滤波的框架下融合尺度不变压缩特征进行动态状态估计,在粒子预测阶段利用2阶自回归模型对粒子状态进行估计与预测,借助观测模型对粒子状态进行更新,并且对粒子进行重采样以防止粒子退化。实验结果表明,相比于原始压缩跟踪算法,改进算法能够更好地跟踪目标尺度的变化,提高跟踪的稳定性和准确性。
  • 黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述[J]. 自动化学报, 2013, 40(4): 561-576. doi: 10.3724/SP.J. 1004.2014.00561.
    LI Wanyi, WANG Peng, and QIAO Hong. A survey of visual attention based methods for object tracking[J]. Acta Automatica Sinica, 2013, 40(4): 561-576. doi: 10.3724/SP.J. 1004.2014.00561.
    MEI Xue and LING Haibin. Robust visual tracking and vehicle classification via spare representation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2011, 33(11): 2259-2272. doi: 10.1109/TPAMI.2011.66.
    BABENKO B, YANG Minghsuan, and BELONGIE S. Visual tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2009, 33(8): 983-990. doi: 10.1109/CVPR.2009.5206737.
    KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239.
    MAO Jiansen and QU Yufu. Tracking of variable scale object based on compressive sensing[J]. Chinese Journal of Liquid Crystals Displays, 2016, 31(6): 497-505. doi: 10.3788/ YJYXS20163105.0497.
    ESLAHI N and AGHAGOLZADEH A. Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3126-3140. doi: 10.1109/TIP. 2016.2562563.
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 864-877. doi: 10.1007/978-3-642-33712-3_62.
    ZHANG Lei, WANG Yanjie, and HE Shuwen. Real-time compressive tracking method based on phase congruency[J]. Acta Photonica Sinica, 2014, 43(8): 124-131 doi: 10.3788/ gzxb20144308.0810003.
    郑超, 陈杰, 殷松峰, 等. 改进的协同训练框架下压缩跟踪[J]. 电子与信息学报, 2016, 38(7): 1624-1630. doi: 10.11999/ JEIT151001.
    ZHENG Chao, CHEN Jie, YIN Songfeng, et al. Optimized compressive tracking in co-training framework[J]. Journal of Electronics Information Technology, 2016, 38(7): 1624-1630. doi: 10.11999/JEIT151001.
    崔灿, 王民钢, 李立, 等. 改进压缩特征的实时压缩跟踪算法[J]. 计算机工程与应用, 2017, 53(15): 210-216. doi: 10.3778/ j.issn.1002-8331.1603-0060.
    CUI Can, WANG Mingang, LI Li, et al. Real-time compressive tracking with advanced compression features[J]. Computer Engineering and Applications, 2017, 53(15): 210-216. doi: 10.3778/j.issn.1002-8331.1603-0060.
    GHIRMIA T. Distributed particle filter for object tracking: with reduced sensor communications[J]. Sensors, 2016, 16(9): 1454-1464. doi: 10.3390/s16091454.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments- based tracking using the integral histogram[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 798-805. doi: 10.1109/ CVPR.2006.256.
    NING J, SHI W, YANG S, et al. Visual tracking based on distribution fields and online weighted multiple instance learning[J]. Image Vision Computing, 2013, 31(11): 853-863. doi: 10.1016/j.imavis.2013.09.003.
    ORON S, BAARHILLEL A, and LEVI D. Locally orderless tracking[J]. International Journal of Computer Vision, 2015, 111(2): 213-228. doi: 10.1109/CVPR.2012.6247895.
    GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of the British Machine Vision Conference, Edinburgh, UK, 2006, 1: 47-56. doi: 10.5244/C.20.6.
    WU Y, LIM J, and YANG M H. Online object tracking: A benchmark [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411-2418. doi: 10.1109/CVPR.2013.312.
  • 加载中
计量
  • 文章访问数:  1359
  • HTML全文浏览量:  103
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-07
  • 修回日期:  2018-01-31
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回