高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频谱拥挤环境中峰均功率比约束的认知雷达发射波形设计

邹鲲 骆艳卜 李伟 李海林

邹鲲, 骆艳卜, 李伟, 李海林. 频谱拥挤环境中峰均功率比约束的认知雷达发射波形设计[J]. 电子与信息学报, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834
引用本文: 邹鲲, 骆艳卜, 李伟, 李海林. 频谱拥挤环境中峰均功率比约束的认知雷达发射波形设计[J]. 电子与信息学报, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834
ZOU Kun, LUO Yanbo, LI Wei, LI Hailin. Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834
Citation: ZOU Kun, LUO Yanbo, LI Wei, LI Hailin. Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1774-1778. doi: 10.11999/JEIT170834

频谱拥挤环境中峰均功率比约束的认知雷达发射波形设计

doi: 10.11999/JEIT170834
基金项目: 

国家自然科学基金(61571456),陕西省自然科学基金(2016JM0644)

详细信息
    作者简介:

    邹鲲:邹 鲲: 男,1976年生,副教授,研究方向为统计信号处理、信号检测与估计、认知雷达信号处理. 骆艳卜: 男,1980年生,讲师,研究方向为无线电导航信号处理、雷达信号处理. 李 伟: 男,1978年生,副教授,研究方向为新体制雷达技术. 李海林: 男,1982年生,讲师,研究方向为超高速飞行器导航信息处理.

  • 中图分类号: TN957.51

Cognitive Radar Waveform Design with A Peak to Average Power Ration Constraint for Spectrally Dense Environments

Funds: 

The National Natural Science Foundation of China (61571456), The Natural Science Foundation of Shaanxi Province (2016JM0644)

  • 摘要: 复杂电磁环境的一个重要特征是频谱资源受限,合理使用有限的频谱资源是认知雷达发射波形设计必须考虑的问题。以峰值与平均功率比(PAR)为约束条件,设计认知雷达发射波形,最大化接收数据信噪比(SNR),最小化波形频谱在受干扰频段内功率。该问题是二次约束的多目标优化问题,采用Pareto优化方法,将两个目标函数通过加权构成一个目标函数,从而构成一个二次约束二次规划非凸优化问题。进一步采用半定规划松弛和随机化方法,可以获得最优发射波形,其性能与Pareto加权系数和PAR约束条件等有关。计算机仿真分析表明,发射波形设计在SNR和干扰抑制能力方面存在制约关系,并可以通过增大发射机动态范围进一步改善性能。
  • [2] TAYLOR J D. Ultra-wideband Radar Technology[M]. Florida: CRC Press LLC, 2001, Chapter 12.
    GRIFFITHS H, WATTS S, and WICKS M. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85-102. doi: 10.1109/JPROC.2014.2365517.
    [3] LINDENFELD M J. Sparse frequency transmit and receive waveform design[J]. IEEE Transactions on Aerospace and Electronic System, 2004, 40(3): 851-861. doi: 10.1109/TAES. 2004.1337459.
    [4] STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar and Navigation, 2016, 10(3): 595-602. doi: 10.1049/iet-rsn.2015. 0372.
    [5] STINCO P, GRECO M, and GINI F. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20-27. doi: 10.1109/MAES.2016.150193.
    [6] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-40. doi: 10.1109/MAES.2016. 160071.
    [7] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2): 1138-1152. doi: 10.1109/ TAES.2014.120731.
    [8] AI W, HUANG Y, and ZHANG S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, Series A, 2011, 128(1/2): 253-283. doi: 10.1007 /s10107-009-0304-7.
    [9] AUBRY A, DE MAIO A, HUANG Y, et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic System, 2015, 50(2): 1029-1038. doi: 10.1109/ TAES.2014.140093.
    [10] AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing, 2016, 23(4): 483-487. doi: 10.1109/LSP.2016.2532739.
    [11] LUO Zhiquan, MA WingKin, SO A M, et al. Semidefinite relaxation of quadratic optimization problems, from its practical deployments and scope of applicability to key theoretical results[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34. doi: 10.1109/MSP.2010.936019.
    [12] GE Peng, CUI Guolong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar and Navigation, 2017, 11(5): 759-767. doi: 10.1049/iet-rsn.2016.0239.
    [13] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electron System Magazine, 2016, 31(12): 14-25. doi: 10.1109 /MAES.2016.150216.
    [14] DE MAIO A, PIEZZO M, FARINA A, et al. Pareto-optimal radar waveform design[J]. IET Radar, Sonar and Navigation, 2011, 5(4): 473-482. doi: 10.1049/iet-rsn.2010.0184.
    [15] DE MAIO A, HUANG Y, PIEZZO M, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697. doi: 10.1109/TSP.2011.2128313.
    [16] YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558-560. doi: 10.1049/el. 2016.4524.
  • 加载中
计量
  • 文章访问数:  1202
  • HTML全文浏览量:  141
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 修回日期:  2018-03-02
  • 刊出日期:  2018-07-19

目录

    /

    返回文章
    返回