高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于语义理解注意力神经网络的多元特征融合中文文本分类

谢金宝 侯永进 康守强 李佰蔚 张霄

谢金宝, 侯永进, 康守强, 李佰蔚, 张霄. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258-1265. doi: 10.11999/JEIT170815
引用本文: 谢金宝, 侯永进, 康守强, 李佰蔚, 张霄. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258-1265. doi: 10.11999/JEIT170815
XIE Jinbao, HOU Yongjin, KANG Shouqiang, LI Baiwei, ZHANG Xiao. Multi-feature Fusion Based on Semantic Understanding Attention Neural Network for Chinese Text Categorization[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1258-1265. doi: 10.11999/JEIT170815
Citation: XIE Jinbao, HOU Yongjin, KANG Shouqiang, LI Baiwei, ZHANG Xiao. Multi-feature Fusion Based on Semantic Understanding Attention Neural Network for Chinese Text Categorization[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1258-1265. doi: 10.11999/JEIT170815

基于语义理解注意力神经网络的多元特征融合中文文本分类

doi: 10.11999/JEIT170815
基金项目: 

黑龙江省海外学人基金(1253HQ019)

Multi-feature Fusion Based on Semantic Understanding Attention Neural Network for Chinese Text Categorization

Funds: 

The Overseas Scholars Fund Project of Heilongjiang Province (1253HQ019)

  • 摘要: 在中文文本分类任务中,针对重要特征在中文文本中位置分布分散、稀疏的问题,以及不同文本特征对文本类别识别贡献不同的问题,该文提出一种基于语义理解的注意力神经网络、长短期记忆网络(LSTM)与卷积神经网络(CNN)的多元特征融合中文文本分类模型(3CLA)。模型首先通过文本预处理将中文文本分词、向量化。然后,通过嵌入层分别经过CNN通路、LSTM通路和注意力算法模型通路以提取不同层次、具有不同特点的文本特征。最终,文本特征经融合层融合后,由softmax分类器进行分类。基于中文语料进行了文本分类实验。实验结果表明,相较于CNN结构模型与LSTM结构模型,提出的算法模型对中文文本类别的识别能力最多提升约8%。
  • 孙晓, 彭晓琪, 胡敏, 等. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975.
    SUN Xiao, PENG Xiaoqi, HU Min, et al. Extended multi- modality features and deep learning based Microblog short text sentiment analysis[J]. Journal of Electronics Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975.
    KIM Yoon. Convolutional neural networks for sentence classification[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1746-1751.
    PHAM Ngocquan, KRUSZEWSKI German, and BOLEDA Gemma. Convolutional neural network language models[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 1153-1162.
    陈钊, 徐睿峰, 桂林, 等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29(6): 172-178. doi: 10.3969/j.issn.1003-0077.2015.06.023.
    CHEN Zhao, XU Ruifeng, GUI Lin, et al. Combining convolutional neural networks and word sentiment sequence features for Chinese text sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(6): 172-178. doi: 10.3969/j.issn.1003-0077.2015.06.023.
    刘龙飞, 杨亮, 张绍武, 等. 基于卷积神经网络的微博情感倾向性分析[J]. 中文信息学报, 2015, 29(6): 159-165. doi: 10.3969/j.issn.1003-0077.2015.06.021.
    LIU Longfei, YANG Liang, ZHANG Shaowu, et al. Convolutional neural networks for Chinese micro-blog sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(6): 159-165. doi: 10.3969/j.issn.1003- 0077.2015.06.021.
    ZHANG Ye, MARSHALL Iain, and WALLACE B C. Rational-augmented convolutional neural networks for text classification[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 759-804.
    MIYAMOTO Yasumasa and CHO Kyunghyun. Gated word-character recurrent language model[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 1992-1997.
    TANG Duyu, QIN Bing, LIU Ting, et al. Document modeling with gated recurrent neural network for sentiment classification[C]. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2015: 1422-1432.
    梁军, 柴玉梅, 原慧斌, 等. 基于极性转移和LSTM递归网络的情感分析[J]. 中文信息学报, 2015, 29(5): 160-167. doi: 10.3969/j.issn.1003-0077.2015.05.020.
    LIANG Jun, CHAI Yumei, YUAN Huibin, et al. Polarity shifting and LSTM based recursive networks for sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(5): 160-167. doi: 10.3969/j.issn.1003-0077.2015.05.020.
    刘飞龙, 郝文宁, 陈刚, 等. 基于双线性函数注意力Bi-LSTM模型的机器阅读理解[J]. 计算机科学, 2017, 44(6A): 92-96. doi: 10.11896/j.issn.1002-137X.2017.6A.019.
    LIU Feilong, HAO Wenning, CHEN Gang, et al. Attention of bilinear function based Bi-LSTM model for machine reading comprehension[J]. Computer Science, 2017, 44(6A): 92-96. doi: 10.11896/j.issn.1002-137X.2017.6A.019.
    CHENG Jianpeng, DONG Li, and LAPATA Mirella. Long short-term memory-networks for machine reading[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 551-561.
    WANG Yequan, HUANG Minlie, ZHAO Li, et al. Attention- based LSTM for aspect-level sentiment classification[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 606-615.
    PARIKH Ankur P, TAKSTROM Oscar, DAS Dipanjan, et al. A decomposable attention model for natural language inference[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 2249-2255.
    GOLUB David and HE Xiaodong. Character-level question answering with attention[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 1598-1607.
    MI Haitao, WANG Zhiguo, and ITTYCHERIAH Abe. Supervised attentions for neural machine translation[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin Texas, 2016: 2283-2288.
  • 加载中
计量
  • 文章访问数:  1969
  • HTML全文浏览量:  347
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-17
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回