高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒主成分分析的运动目标检测优化算法

杨依忠 汪鹏飞 胡雄楼 伍能举

杨依忠, 汪鹏飞, 胡雄楼, 伍能举. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
引用本文: 杨依忠, 汪鹏飞, 胡雄楼, 伍能举. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
YANG Yizhong, WANG Pengfei, HU Xionglou, WU Nengju. Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789
Citation: YANG Yizhong, WANG Pengfei, HU Xionglou, WU Nengju. Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789

基于鲁棒主成分分析的运动目标检测优化算法

doi: 10.11999/JEIT170789
基金项目: 

国家自然科学基金(61401137, 61404043),安徽省科技重大专项(16030901007),中央高校基础研究基金(J2014HGXJ0083)

Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis

Funds: 

The National Natural Science Foundation of China (61401137, 61404043), The Key Science and Technology Project of Anhui Province (16030901007), The Fundamental Research Funds for the Central Universities (J2014HGXJ0083)

  • 摘要: 针对鲁棒主成分分析(Robust Principal Component Analysis, RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景和运动目标在整个视频流上检出点均值和方差的差异特性,进一步将动态背景和运动目标分离开来。实验结果表明,所提算法能够有效地处理动态背景的问题,并在一定程度上完整检测出运动目标。
  • KULCHANDANI J S and DANGARWALA K J. Moving object detection: review of recent research trends[C]. International Conference on Pervasive Computing, Pune, 2015: 1-5. doi: 10.1109/PERVASIVE.2015.7087138.
    LIANG R, YAN L, GAO P, et al. Aviation video moving- target detection with inter-frame difference[C]. International Congress on Image and Signal Processing, Yantai, 2010: 1494-1497. doi: 10.1109/CISP.2010.5646303.
    BARRON J L, FLEET D J, and BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43-77. doi: 10.1007 /BF01420984.
    DENMAN S, FOOKES C, and SRIDHARAN S. Improved simultaneous computation of motion detection and optical flow for object tracking[C]. Digital Image Computing: Techniques and Applications, Washington, D.C., USA, 2009: 175-182. doi: 10.1109/DICTA.2009.35.
    周建英, 吴小培, 张超. 基于滑动窗的混合高斯模型运动目标检测算法[J]. 电子与信息学报, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
    ZHOU Jianying, WU Xiaopei, and ZHANG Chao. A moving object detection method based on sliding window gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
    STAUFFER Chris and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999: 2246-2252. doi: 10.1109/CVPR.1999.784637.
    MITTAL A and PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]. Computer Vision and Pattern Recognition, Washington, D.C., USA, 2004: 302-309. doi: 10.1109/CVPR.2004.164.
    JAVED S, OH S H, SOBRAL A, et al. Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 930-938. doi: 10.1109/ ICCVW.2015.123.
    CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11:1-11:37. doi: 10.1145/1970392.1970395.
    ZHOU X, YANG C, and YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 597-610. doi: 10.1109/TPAMI.2012. 132.
    CAO X, LIANG Y, and GUO X. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014-1027. doi: 10.1109/TCYB.2015.2419737.
    GAO Z, CHEONG L F, and WANG Y X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 36(10): 1975-1987. doi: 10.1109/TPAMI.2014.2314663.
    郭小路, 陶海红, 杨东. 联合图形约束和稳健主成分分析的地面动目标检测算法[J]. 电子与信息学报, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
    GUO Xiaolu, TAO Haihong, and YANG Dong. Ground moving target detection based on robust principal component analysis and shape constraint[J]. Journal of Electronics Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
    蔡念, 周杨, 刘根, 等. 鲁棒主成分分析的运动目标检测综述[J]. 中国图象图形学报, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
    CAI Nian, ZHOU Yang, LIU Gen, et al. Survey of robust principal component analysis methods for moving object detection[J]. Journal of Image and Graphics, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
    ELTANTAWY A and SHEHATA M S. Moving object detection from moving platforms using Lagrange multiplier [C]. IEEE International Conference on Image Processing, Quebec City, Q.C., Canada, 2015: 2586-2590. doi: 10.1109/ ICIP.2015.7351270.
    SOBRAL A, BOUWMANS T, and ZAHZAH E. Double- constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1-6. doi: 10.1109/AVSS.2015.7301753.
    LIANG D, KANEKO S, HASHIMOTO M, et al. Co- occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes[J]. Pattern Recognition, 2015, 48(4): 1374-1390. doi: 10.1016/j.patcog. 2014.10.020.
    GRACIELA Ramrez-Alonso and MARIOI Chacn-Murgua. Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos[J]. Neurocomputing, 2016, 175: 990-1000. doi: 10.1016/j.neucom. 2015.04.118.
  • 加载中
计量
  • 文章访问数:  1614
  • HTML全文浏览量:  190
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-04
  • 修回日期:  2018-01-10
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回