高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络的低剂量CT肺部去噪

吕晓琪 吴凉 谷宇 张明 李菁

吕晓琪, 吴凉, 谷宇, 张明, 李菁. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353-1359. doi: 10.11999/JEIT170769
引用本文: 吕晓琪, 吴凉, 谷宇, 张明, 李菁. 基于深度卷积神经网络的低剂量CT肺部去噪[J]. 电子与信息学报, 2018, 40(6): 1353-1359. doi: 10.11999/JEIT170769
Lü Xiaoqi, WU Liang, GU Yu, ZHANG Ming, LI Jing. Low Dose CT Lung Denoising Model Based on Deep Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1353-1359. doi: 10.11999/JEIT170769
Citation: Lü Xiaoqi, WU Liang, GU Yu, ZHANG Ming, LI Jing. Low Dose CT Lung Denoising Model Based on Deep Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1353-1359. doi: 10.11999/JEIT170769

基于深度卷积神经网络的低剂量CT肺部去噪

doi: 10.11999/JEIT170769
基金项目: 

国家自然科学基金(61771266, 61179019),内蒙古自治区自然科学基金(2015MS0604),包头市科技计划项目(2015C2006-14),内蒙古自治区高等学校科学研究项目(NJZY145)

Low Dose CT Lung Denoising Model Based on Deep Convolution Neural Network

Funds: 

The National Natural Science Foundation of China (61771266, 61179019), The Natural Science Foundation of the Inner Mongolia Autonomous region (2015MS0604), The Science and Technology Plan Projects of Baotou City (2015C2006-14), The Institutions of Higher Learning Scientific Research Projects of the Inner Mongolia Autonomous region (NJZY145)

  • 摘要: 为了降低低剂量CT肺部噪声对肺癌筛查后期诊断的影响,该文提出一种基于深度卷积神经网络的低剂量CT肺部去噪算法。以完整的CT肺部图像作为输入,池化层对输入图像进行降维处理;批规范化解决随着网络深度的增加性能降低的问题;引入残差学习,学习模型中每一层的残差,最后输出去噪图像。与经典去噪算法实验结果对比,所提方法在解决去噪方面达到了很好的滤波效果,同时也较好地保留了肺部图像的细节信息,大大优于传统的去噪算法。
  • 张云逸. 低剂量CT图像的质量改善算法研究[D]. [硕士论文],郑州大学, 2015.
    ZHANG Yunyi. Study of image quality improvement algorithm for low-dose CT[D]. [Master dissertation], Zhengzhou University, 2015.
    刘光达, 赵立荣. 基于最小均方误差原理的医学X光影像滤波阈值选择[J]. 光学精密工程, 2001, 9(1): 47-50.
    LIU Guangda and ZHAO Lirong. Threshold selection method for medical X-ray images filter based on minimum even- square error[J]. Optics and Precision Engineering, 2001, 9(1): 47-50.
    SPERL J, BEQUE D, CLAUS B, et al. Computer-Assisted Scan Protocol and Reconstruction (CASPAR)-reduction of image noise and patient dose[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 724-732. doi: 10.1109/TMI. 2009.2034515.
    代双凤, 吕科, 翟锐, 等. 基于3D区域增长法和改进的凸包算法相结合的全肺分割方法[J]. 电子与信息学报, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365.
    DAI Shuangfeng, L Ke, ZHAI Rui, et al. Lung segmentation method based on 3D region growing method and improved convex hull algorithm[J]. Journal of Electronics Information Technology, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365.
    徐玉风. 基于贝叶斯估计的低剂量CT图像去噪算法[D]. [硕士论文], 郑州大学, 2016.
    XU Yufeng. The denoising algorithm of low-dose CT images based on bayesian estimation[D]. [Master dissertation], Zhengzhou University, 2016.
    GREEN M, MAROM E M, KIRYATI N, et al. Efficient Low- Dose CT Denoising by Locally-Consistent Non-Local Means (LC-NLM)[M]. Heidelberg: Springer, 2016: 423-431. doi: 10.1007/978-3-319-46729-9_49.
    SHANG Xiaobao, DING Yong, DENG Ruizhe, et al. A three- dimensional denoising method for low-dose computed tomography[J]. Journal of Medical Imaging Health Informatics, 2017, 7(1): 283-287. doi: 10. 1166/jmihi.2017. 2020.
    毕一鸣. 低剂量CT图像恢复算法研究[D]. [硕士论文], 南方医科大学, 2010: 12-60.
    BI Yiming. Image restoration for low-dose computed tomography[D]. [Master dissertation], Southern Medical University, 2010: 12-60.
    ZHANG H, MA J, WANG J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: An adaptive approach[J]. Computerized Medical Imaging Graphics the Official Journal of the Computerized Medical Imaging Society, 2015, 43(6): 26-35. doi: 10.1016/j.compmedimag.2015.02.008.
    朱永成, 陈阳, 罗立民, 等. 基于字典学习的低剂量X-ray CT图像去噪[J]. 东南大学学报(自然科学版), 2012, 42(5): 864-868. doi: 10.3969/j.issn.1001-0505.2012.05.013.
    ZHU Yongcheng, CHEN Yang, LUO Limin, et al. Dictionary learning based denoising of low-dose X-ray CT image[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(5): 864-868. doi: 10.3969/j.issn.1001-0505.2012.05. 013.
    LORE K G, AKINTAYO A, and SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2015, 61(1): 650-662. doi: 10.1016/j.patcog.2016.06.008.
    LI H M. Deep learning for image denoising[J]. International Journal of Signal Processing Image Processing P, 2014, 3(7): 171-180. doi: 10.14257/ijsip.2014.7.3.14.
    XIE J, XU L, and CHEN E. Image denoising and inpainting with deep neural networks[C]. International Conference on Neural Information Processing Systems, Harrahs, 2012, 1: 341-349.
    李传朋, 秦品乐, 张晋京. 基于深度卷积神经网络的图像去噪研究[J]. 计算机工程, 2017, 43(3): 253-260. doi: 10.3969/j. issn.1000-3428.2017.03.042.
    LI Chuanpeng, QIN Pinle, and ZHANG Jinjing. Research on image denoising based on deep convolutional neural network[J]. Computer Engineering, 2017, 43(3): 253-260. doi: 10.3969/j.issn.1000-3428.2017.03.042.
    吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30(2): 97-105. doi: 10.16451/j.cnki.issn1003-6059.201702001.
    L Yongbiao, ZHAO Jianwei, and CAO Feilong. Image denoising algorithm based on composite convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 97-105. doi: 10.16451/j.cnki.issn1003-6059. 201702001.
    ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206.
    周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017. 01229.
    ZHOU Feiyan, JIN Linpeng, and DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016. 2017.01229.
    王华利, 邹俊忠, 张见, 等. 基于深度卷积神经网络的快速图像分类算法[J]. 计算机工程与应用, 2017, 53(13): 181-188. doi: 10.3778/j.issn.1002-8331.1601-0435.
    WANG Huali, ZOU Junzhong, ZHANG Jian, et al. Fast image classification algorithm based on deep convolutional neural network[J]. Computer Engineering and Applications, 2017, 53(13): 181-188. doi: 10.3778/j.issn.1002-8331.1601- 0435.
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
    ARMATO S, MCLENNAN G, MCNITT-GRAY M, et al. WE-B-201B-02: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed public database of CT scans for lung nodule analysis[J]. Medical Physics, 2010, 37(6): 3416-3417. doi: 10.1118/1.3469350.
    HENSCHKE C I, MCCAULEY D I, YANKELEVITZ D F, et al. Early lung cancer action project: A summary of the findings on baseline screening[J]. Oncologist, 2001, 6(2): 147-152. doi: 10.1634/theoncologist.6-2-147.
    HOR A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th IEEE International Conference on Pattern Recognition, Istanbul, 2010: 2366-2369. doi: 10.1109 /ICRP. 2010.579.
  • 加载中
计量
  • 文章访问数:  1990
  • HTML全文浏览量:  300
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-01
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回