El ASSAF A, ZAIDI S, AFFES S, et al. Accurate sensors localization in underground mines or tunnels[C]. IEEE International Conference on Ubiquitous Wireless Broadband, Montreal, Canada, 2015: 1-6. doi: 10.1109/ICUWB.2015. 7324418.
|
刘文远, 吕倩, 王林, 等. 基于动态地标的在线室内平面图生成方法[J]. 电子与信息学报, 2016, 38(6): 1519-1527. doi: 10.11999/JEIT150926.
|
LIU Wenyuan, L Qian, WANG Lin, et al. Multidimensional fingerprints method for indoor mobile trajectory mapping with geomagnetic information[J]. Journal of Electronics Information Technology, 2016, 38(6): 1519-1527. doi: 10.11999/JEIT150926.
|
YE Y, ZHANG L, SONG X, et al. A novel coal mine security monitoring system based on ZigBee[C]. International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 2015: 39-42. doi: 10.1109/ ICITBS.2015.16.
|
MI J and TAKAHASHI Y. Low cost design of HF-band RFID system for mobile robot self-localization based on multiple readers and tags[C]. IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, 2015: 194-199. doi: 10.1109/ROBIO.2015.7418766.
|
LI J and LIU H P. A new weighted centroid localization algorithm in coal Mine wireless sensor networks[C]. International Conference on Computer Research and Development, Shanghai, China, 2011: 106-109. doi: 10.1109 /ICCRD.2011.5764256.
|
WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on bayesian filter using chirp- spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. doi: 10.1109/TIE.2011. 2165462.
|
WANG Jie, GAO Qinghua, Pan Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495.
|
FAN Qigao, SUN Biwen, SUN Yan, et al. Performance enhancement of MEMS-based INS/UWB integration for indoor navigation applications[J]. IEEE Sensors Journal, 2017, 17(10): 3116-3130. doi: 10.1109/JSEN.2017.2689802.
|
谷阳, 宋千, 李杨寰, 等. 基于惯性鞋载传感器的人员自主定位粒子滤波方法[J]. 电子与信息学报, 2015, 37(2): 484-488. doi: 10.11999/JEIT140362.
|
GU Yang, SONG Qian, LI Yanghuan, et al. A particle filter method for pedestrian navigation using foot-mounted inertial sensors[J]. Journal of Electronics Information Technology, 2015, 37(2): 484-488. doi: 10.11999/JEIT140362.
|
何坚, 万志江, 刘金伟. 基于电源线和位置指纹的室内定位技术[J]. 电子与信息学报, 2014, 36(12): 2902-2908. doi: 10.3724 /SP.J.1146.2013.02022.
|
HE Jian, WAN Zhijiang, and LIU Jinwei. Indoor positioning technology based on powerline and location fingerprint[J]. Journal of Electronics Information Technology, 2014, 36(12): 2902-2908. doi: 10.3724/SP.J.1146.2013.02022.
|
YUAN Yazhou, CHEN Cailian, GUAN Xinping, et al. An energy-efficient underground localization system based on heterogeneous wireless networks[J]. Sensors, 2015, 15(6): 12358-12376. doi: 10.3390/s150612358.
|
INDERST F, PASCUCCI F, and RENAUDIN V. PDR and GPS trajectory parts matching for an improved self- contained personal navigation solution with handheld device[C]. Navigation Conference, Lausanne, Switzerland, 2017: 100-107. doi: 10.1109/EURONAV.2017.7954198.
|
ROHRIG C and MULLER M. Localization of sensor nodes in a wireless sensor network using the nanoLOC TRX transceiver[C]. Vehicular Technology Conference, Barcelona, Spain, 2009: 1-5.
|
HOF A L. Scaling gait data to body size[J]. Gait Posture, 1996, 4(3): 222-223. doi: 10.1016/0966-6362(95)01057-2
|
LI Yili and WONG Konmax. Riemannian distances for signal classification by power spectral density[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 655-669. doi: 10.1109/JSTSP.2013.2260320.
|
YANG Jian, ZHANG D, FRANGI A F, et al. Two- dimensional PCA: A new approach to appearance-based face representation and recognition.[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2004, 26(1): 131-137. doi: 10.1109/TPAMI.2004.1261097.
|
MARTINEZ A M and KAK A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2002, 23(2): 228-233.
|
TORRES G A and BENITEZ V H. Finger movements classification from grasping spherical objects with surface electromyography using time domain based features[C]. Mechatronics, Adaptive and Intelligent Systems, Hermosillo, Mexico, 2016. doi: 10.1109/MAIS.2016.7761904.
|
SVETNIK V, LIAW A, TONG C, et al. Random forest: A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information Computer Sciences, 2003, 43(6): 1947-1958. doi: 10.1021/ ci034160g.
|