高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩特征的鱼眼视频目标跟踪算法研究

李雅倩 贾璐 李海滨 张文明 张岩松

李雅倩, 贾璐, 李海滨, 张文明, 张岩松. 基于压缩特征的鱼眼视频目标跟踪算法研究[J]. 电子与信息学报, 2018, 40(5): 1242-1249. doi: 10.11999/JEIT170745
引用本文: 李雅倩, 贾璐, 李海滨, 张文明, 张岩松. 基于压缩特征的鱼眼视频目标跟踪算法研究[J]. 电子与信息学报, 2018, 40(5): 1242-1249. doi: 10.11999/JEIT170745
LI Yaqian, JIA Lu, LI Haibin, ZHANG Wenming, ZHANG Yansong. Research on Target Tracking Algorithm from Fisheye Camera Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1242-1249. doi: 10.11999/JEIT170745
Citation: LI Yaqian, JIA Lu, LI Haibin, ZHANG Wenming, ZHANG Yansong. Research on Target Tracking Algorithm from Fisheye Camera Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1242-1249. doi: 10.11999/JEIT170745

基于压缩特征的鱼眼视频目标跟踪算法研究

doi: 10.11999/JEIT170745
基金项目: 

河北省自然科学基金(F2015203212)

Research on Target Tracking Algorithm from Fisheye Camera Based on Compressive Sensing

Funds: 

The Natural Science Foundation of Hebei Province (F2015203212)

  • 摘要: 该文针对畸变严重的鱼眼图像中的目标跟踪,提出一种能适应尺度变化、姿态变化以及形状畸变的鱼眼视频目标跟踪的方法。该方法首先将灰度特征和相对梯度特征相结合得到目标的高维特征,然后对其平均降维得到目标的压缩特征。并根据鱼眼成像模型得到投影点的运动特性,确定目标的运动范围。为了适应尺度变化,在块匹配运动估计思想的基础上,对目标跟踪框的顶点分别进行由粗到精的定位,并在此过程中根据跟踪框的尺度相应改变压缩特征的尺度。实验结果表明:该算法在目标畸变、尺度变化、姿态变化以及局部遮挡等情况下,判断指标均优于其他对比算法。
  • L Lijun and WU Xuewei. Design of initial structure of fisheye lens[J]. Acta Optica Sinica, 2017, 37(2): 105-114.
    吕丽军, 吴学伟. 鱼眼镜头初始结构的设计[J]. 光学学报, 2017, 37(2): 105-114.
    URBAN S, LEITLOFF J, and HINZ S. Improved wide-angle, fisheye and omnidirectional camera calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108(8): 72-79. doi: 10.1016/j.isprsjprs.2015.06.005.
    PEREZ Y A, LOPEZ N G, and GUERRERO J. A novel hybrid camera system with depth and fisheye cameras[C]. International Conference on Pattern Recognition. Cancun, Mexico, 2017: 2789-2794. doi: 10.1109/ICPR.2016.7900058.
    WALLHOFF F, ZOBL M, and RIGOLL G. Face tracking in meeting room scenarios using omnidirectional views[C]. International Conference on Pattern Recognition, Washington, USA, 2004: 933-936. doi: 10.1109/ICPR.2004. 368.
    BAKSTEIN H and LEONARDIS A. Catadioptric image- based rendering for mobile robot localization[C]. International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007: 1-6. doi: 10.1109/ICCV.2007.4409199.
    CAO Z. Dynamic omni-directional vision localization using a beacon tracker based on particle filter[J]. The International Society for Optical Engineering, 2007, 6764(9): 13-28. doi: 10.1117/12.733862.
    BRITO J H, ANGST R, KOSER K, et al. Radial distortion self-calibration[C]. Computer Vision and Pattern Recognition, Washington, USA, 2013: 1368-1375. doi: 10.1109/CVPR. 2013.180.
    CHEN X, HUANG K, and TAN T. Object tracking across non-overlapping cameras using adaptive models[C]. International Conference on Computer Vision, Berlin, Germany, 2013: 464-477. doi: 10.1007/978-3-642-37484- 5_38.
    DEMONCEAUX C and VASSEUR P. Omnidirectional image processing using geodesic metric[C]. IEEE International Conference on Image Processing, Piscataway, USA, 2009: 221-224. doi: 10.1109/ICIP.2009.5414485.
    BAZIN J C, YOON K J, KWEON I, et al. Particle filter approach adapted to catadioptric images for target tracking application[C]. British Machine Vision Conference, London, UK, 2009: 1-11. doi: 10.5244/C.23.37.
    TAIANA M, GASPAR J, NASCIMENTO J, et al. 3D tracking by catadioptric vision based on particle filters[C]. RoboCup Robot Soccer World Cup XI, Atlanta, USA, 2007: 77-88. doi: 10.1007/978-3-540-68847-1_7.
    WANG X, LI W, WANG C, et al. An improved particle filter tracking algorithm for fisheye camera[C]. Chinese Control and Decision Conference, Yinchuan, China, 2010: 329-332. doi: 10.1109/CCDC.2016.7531004.
    WANG W, XU Y, WANG Y, et al. Effective weighted compressive tracking[C]. International Conference on Image and Graphics. Qingdao, China, 2013: 353-357. doi: 10.1109/ ICIG.2013.77.
    汪龙. 一种新的基于自适应窗口的压缩跟踪算法[J]. 计算机与数字工程, 2016, 44(9): 1700-1704. doi: 10.3969/j.issn. 1672-9722.2016.09.016.
    WANG Long. A new compressive tracking algorithm based on adaptive window[J]. Computer and Digital Engineering, 2016, 44(9): 1700-1704. doi: 10.3969/j.issn.1672-9722.2016. 09.016.
    ZHANG K, ZHANG L, and YANG M H. Real-time compressive tracking[C]. European Conference on Computer Vision, Berlin, Germany, 2012: 864-877. doi: 10.1007/978-3- 642-33712-3_62.
    EICHENSEER A and KAUP A. A data set providing synthetic and real-world fisheye video sequences[C]. International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1541-1545. doi: 10.1109/ ICASSP.2016.7471935.
    ZHANG K, ZHANG L, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. doi: 10.1109/ TPAMI.2014.2315808.
    ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spatio-temporal context learning[C]. Computer Vision and Pattern Recognition, Oregon, USA, 2013: 1-15.
    POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120. doi: 10.1109/CVPR.2015.7298823.
    EVERINGHAM M, GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4.
  • 加载中
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  173
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 修回日期:  2018-01-24
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回