高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多实例回归模型的视觉跟踪算法研究

张园强 查宇飞 库涛 吴敏 毕笃彦

张园强, 查宇飞, 库涛, 吴敏, 毕笃彦. 基于多实例回归模型的视觉跟踪算法研究[J]. 电子与信息学报, 2018, 40(5): 1202-1209. doi: 10.11999/JEIT170717
引用本文: 张园强, 查宇飞, 库涛, 吴敏, 毕笃彦. 基于多实例回归模型的视觉跟踪算法研究[J]. 电子与信息学报, 2018, 40(5): 1202-1209. doi: 10.11999/JEIT170717
ZHANG Yuanqiang, ZHA Yufei, KU Tao, WU Min, BI Duyan. Visual Object Tracking Based on Multi-exemplar Regression Model[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1202-1209. doi: 10.11999/JEIT170717
Citation: ZHANG Yuanqiang, ZHA Yufei, KU Tao, WU Min, BI Duyan. Visual Object Tracking Based on Multi-exemplar Regression Model[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1202-1209. doi: 10.11999/JEIT170717

基于多实例回归模型的视觉跟踪算法研究

doi: 10.11999/JEIT170717
基金项目: 

国家自然科学基金(61472442, 61773397, 61701524),陕西省科技新星项目(2015KJXX-46)

Visual Object Tracking Based on Multi-exemplar Regression Model

Funds: 

The National Natural Science Foundation of China (61472442, 61773397, 61701524), The Young Star Science and Technology Program of Shaanxi Province (2015KJXX-46)

  • 摘要: 目前大部分基于检测的跟踪算法将跟踪任务看作是一个类别分类的任务,当目标发生形变或者遇到相似物体的干扰时,容易导致模型漂移。为此该文提出一种多实例回归跟踪算法。在该算法中,跟踪任务被认为建立在实例模型之上更为合适,为此该文利用一帧图像建立实例模型,并在时间序列上建立多实例模型集合表征目标的最近状态;为使跟踪算法能够适应目标的形变,利用逻辑回归将实例模型作为隐变量,由最近若干帧建立的正负样本集作为训练集,共同构建多实例回归跟踪模型。由于跟踪模型在整体上对多个实例模型建模,把它们紧密地联系在一起,故能有效应对目标的形变;由于模型漂移仅会影响当前帧的实例模型,各个实例模型之间互相独立,故跟踪算法能够有效减轻模型漂移对鲁棒跟踪的影响。实验中,OTB 2013数据库和UAV 123数据库被用来验证该文算法,DeepSRDCF, Siamese-fc等算法作为对比算法,实验结果表明,该文算法不仅充分发挥了基于多实例回归模型进行跟踪的优势,在形变等属性上具有很好的性能,而且在整体性能上优于各类先进算法3%~5%。
  • BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive objecttracking based on color names histogram[J]. Journal of Electronics Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921
    毕笃彦, 库涛, 查宇飞, 等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921
    HARE S, SAFFARI A, TORR P H S, et al. Struck: Structured output tracking with kernels[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 263-270.
    ZHU G, PORIKLI F, and LI H. Beyond local search: Tracking objects everywhere with instance-specific proposals [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 943-951.
    DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 4310-4318.
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1401-1409.
    GAO C, CHEN F, YU J G, et al. Robust visual tracking using exemplar-based detectors[J]. IEEE Transactions on Circuits Systems for Video Technology, 2017, 27(2): 300-312. doi: 10.1109/TCSVT.2015.2513700
    MALISIEWICZ T, GUPTA A, and ROS A A. Ensemble of exemplar-SVMs for object detection and beyond[C]. International Conference on Computer Vision, Barcelona, Spain, 2011: 89-96.
    TAO R, GAVVES E, and SMEULDER A W M. Siamese instance search for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1420-1429.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 850-865.
    CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: Delving deep into convolutional nets[OL]. https://arxiv.org/abs/1405.3531, 2014.
    DENG J, DONG W, SOCHER R, et al. Imagenet: A large- scale hierarchical image database[C]. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 248-255.
    PLATT J. Sequential minimal optimization: A fast algorithm for training support vector machines[J]. International Journal of Advanced Computer Science and Applications, 1998, 208(14): 98-112.
    NAM H, BAEK M, and HAN B. Modeling and propagating cnns in a tree structure for visual tracking[OL]. https://arxiv. org/abs/1608.07242.
    NAM H and HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 4293-4302.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587.
    FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: A library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9(8): 1871-1874.
    WU Y, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Oregon, USA, 2013: 2411-2418.
    MUELLER M, SMITH N, and GHANEM B. A benchmark and simulator for uav tracking[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 445-461.
    DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 621-629.
    ZHANG J, MA S, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 188-203.
    HONG Z, CHEN Z, WANG C, et al. Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 749-758.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886-893.
  • 加载中
计量
  • 文章访问数:  1307
  • HTML全文浏览量:  173
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-19
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回