高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部仿射配准的鲁棒非刚体配准算法

熊磊 吴礼洋 杜少毅 毕笃彦 方挺

熊磊, 吴礼洋, 杜少毅, 毕笃彦, 方挺. 基于局部仿射配准的鲁棒非刚体配准算法[J]. 电子与信息学报, 2018, 40(4): 920-927. doi: 10.11999/JEIT170699
引用本文: 熊磊, 吴礼洋, 杜少毅, 毕笃彦, 方挺. 基于局部仿射配准的鲁棒非刚体配准算法[J]. 电子与信息学报, 2018, 40(4): 920-927. doi: 10.11999/JEIT170699
XIONG Lei, WU Liyang, DU Shaoyi, BI Duyan, FANG Ting. Robust Non-rigid Registration Algorithm Based on Local Affine Registration[J]. Journal of Electronics & Information Technology, 2018, 40(4): 920-927. doi: 10.11999/JEIT170699
Citation: XIONG Lei, WU Liyang, DU Shaoyi, BI Duyan, FANG Ting. Robust Non-rigid Registration Algorithm Based on Local Affine Registration[J]. Journal of Electronics & Information Technology, 2018, 40(4): 920-927. doi: 10.11999/JEIT170699

基于局部仿射配准的鲁棒非刚体配准算法

doi: 10.11999/JEIT170699
基金项目: 

国家自然科学基金(61379104, 61372167)

Robust Non-rigid Registration Algorithm Based on Local Affine Registration

Funds: 

The National Natural Science Foundation of China (61379104, 61372167)

  • 摘要: 针对传统点集非刚体配准算法对复杂局部形变数据配准精度低,收敛速度慢等问题,该文提出一种基于局部仿射配准的鲁棒非刚体配准算法。该算法采用分层迭代的方式由粗到精地完成点集的非刚体配准。在每层迭代中,首先对子形状点集集合和子目标点集集合进行分块处理并更新分块后每一类子点集的形状控制点。然后利用控制点引导仿射迭代最近点(ICP)算法求解对应子点集间的局部仿射变换。接着利用上一步求解的局部仿射变换,更新子形状点集集合及其形状控制点集合。直到配准误差收敛时,循环结束并输出更新后的形状点集。实验结果表明,所提算法与传统点集非刚体算法相比具有更强的精确性和收敛性。
  • ABATE A F, NAPPI M, RICCIO D, et al. 2D and 3D face recognition: A survey[J]. Pattern Recognition Letters, 2007, 28(14): 1885-1906. doi: 10.1016/j.patrec.2006.12.018.
    WU G, KIM M, WANG Q, et al. Hierarchical attribute- guided, symmetric diffeomorphic registration for mr brain images[J]. Human Brain Mapping, 2014, 35(3): 1044-1060. doi: 10.1007/978-3-642-33418-4_12.
    ZHANG C, DU S, LIU J, et al. Robust 3D point set registration using iterative closest point algorithm with bounded rotation angle[J]. Signal Processing, 2016, 120(C): 777-788. doi: 10.1016/j.sigpro.2015.01.021.
    ZHANG L, GAO Y, XIA Y, et al. Representative discovery of structure cues for weakly-supervised image segmentation[J]. IEEE Transactions on Multimedia, 2014, 16(2): 470-479. doi: 10.1109/TMM.2013.2293424.
    JAVADI M S, KADIM Z, WOON H H, et al. An automatic robust image registration algorithm for aerial mapping[J]. International Journal of Image and Graphics, 2015, 15(2): 154-169. doi: 10.1142/S0219467815400021.
    DU S, GUO Y, SANROMA G, et al. Building dynamic population graph for accurate correspondence detection[J]. Medical Image Analysis, 2015, 26(1): 256-267. doi: 10.1016/j. media.2015.10.001.
    BESL P J and MCKAY H D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. doi: 10.1109/34. 121791.
    ZHANG K, LI X, and ZHANG J. A robust point-matching algorithm for remote sensing image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(2): 469-473. doi: 10.1109/LGRS.2013.2267771.
    DONG J, PENG Y, YING S, et al. Lietricp: An improvement of trimmed iterative closest point algorithm[J]. Neurocomputing, 2014, 140: 67-76. doi: 10.1016/j.neucom. 2014.03.035.
    BERGSTRM P and EDLUND O. Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach[J]. Numerical Algorithms, 2017, 74(3): 755-779. doi: 10.1007/s11075-016-0170-3.
    AMBERG B, ROMDHANI S, and VETTER T. Optimal step non-rigid ICP algorithms for surface registration[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    KOU Q, YANG Y, DU S, et al. A modified non-rigid ICP algorithm for registration of chromosome images[C]. International Conference on Intelligent Computing, Lanzhou, China, 2016: 503-513.
    MYRONENKO A and SONG X. Point set registration: Coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275. doi: 10.1109/TPAMI.2010.46.
    HASANBELLIU E, GIRALDO L S, and PRINCIPE J C. A robust point matching algorithm for non-rigid registration using the Cauchy-Schwarz divergence[C]. IEEE international Workshop on Machine Learning for Signal Processing, Beijing, China, 2011: 1-6.
    CHEN J, MA J, YANG C, et al. Non-rigid point set registration via coherent spatial mapping[J]. Signal Processing, 2015, 106(C): 62-72. doi: 10.1016/j.sigpro.2014.07. 004.
    MA J, ZHAO J, and YUILLE A L. Non-rigid point set registration by preserving global and local structures[J]. IEEE Transactions on Image Processing, 2016, 25(1): 53-64. doi: 10.1109/TIP.2015.2467217.
    HARRIS C. A combined corner and edge detector[C]. Proceedings of Fourth Alvey Vision Conference, Manchester, UK, 1988: 147-151.
    NUCHTER A, LINGEMANN K, and HERTZBERG J. Cached k-d tree search for ICP algorithms[C]. International Conference on 3-d Digital Imaging and Modeling, Montreal, Canada, 2007: 419-426.
    CHEN H and LIN T. An algorithm to build convex hulls for 3-D objects[J]. Journal of the Chinese Institute of Engineers, 2006, 29(6): 945-952. doi: 10.1080/02533839.2006.9671195.
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072.
    LATECKI L J, LAKAMPER R, and ECKHARDT T. Shape descriptors for non-rigid shapes with a single closed contour[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, USA, 2000: 424-429.
  • 加载中
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  164
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回