高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种通过节点序寻优进行贝叶斯网络结构学习的算法

刘彬 王海羽 孙美婷 刘浩然 刘永记 张春兰

刘彬, 王海羽, 孙美婷, 刘浩然, 刘永记, 张春兰. 一种通过节点序寻优进行贝叶斯网络结构学习的算法[J]. 电子与信息学报, 2018, 40(5): 1234-1241. doi: 10.11999/JEIT170675
引用本文: 刘彬, 王海羽, 孙美婷, 刘浩然, 刘永记, 张春兰. 一种通过节点序寻优进行贝叶斯网络结构学习的算法[J]. 电子与信息学报, 2018, 40(5): 1234-1241. doi: 10.11999/JEIT170675
LIU Bin, WANG Haiyu, SUN Meiting, LIU Haoran, IU Yongji, HANG Chunlan. Learning Bayesian Network Structure from Node Ordering Searching Optimal[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1234-1241. doi: 10.11999/JEIT170675
Citation: LIU Bin, WANG Haiyu, SUN Meiting, LIU Haoran, IU Yongji, HANG Chunlan. Learning Bayesian Network Structure from Node Ordering Searching Optimal[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1234-1241. doi: 10.11999/JEIT170675

一种通过节点序寻优进行贝叶斯网络结构学习的算法

doi: 10.11999/JEIT170675
基金项目: 

国家自然科学基金(51641609)

Learning Bayesian Network Structure from Node Ordering Searching Optimal

Funds: 

The National Natural Science Foundation of China (51641609)

  • 摘要: 针对K2算法过度依赖节点序,遗传算法节点序寻优效率差的问题,该文提出一种直接对节点序进行评分搜索的贝叶斯结构学习算法。该算法以K2算法为基础,首先通过计算支撑树权重矩阵,构建能够定量评价节点序的适应度函数。然后通过提出混合交叉策略和孤立节点处理机制,同时利用动态学习因子和倒置变异策略,提升遗传算法节点序寻优的性能。最后将得到的节点序作为K2算法的先验知识得到最优贝叶斯网络结构。仿真结果表明,该方法解决了K2算法依赖先验知识的问题,相比于其它优化算法,评分值平均增加了13.11%。
  • 刘广怡, 李鸥, 宋涛, 等. 基于贝叶斯网络的无线传感网高效数据传输方法[J]. 电子与信息学报, 2016, 38(6): 1362-1367. doi: 10.11999/JEIT151027.
    TIEN I and KIUREGHIAN A D. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems[J]. Reliability Engineering System Safety, 2016, 156: 134-147. doi: 10.1016/j.ress.2016.07.022.
    LIU Guangyi, LI Ou, SONG Tao, et al. Energy-efficiency data transmission method in WSN based on Bayesian network[J]. Journal of Electronics Information Technology, 2016, 38(6): 1362-1367. doi: 10.11999/JEIT151027.
    QIU H, WEI Z, LIU Y, et al. A Bayesian network meta- analysis of three different surgical procedures for the treatment of humeral shaft fractures[J]. Medicine, 2016, 95(51): e5464. doi: 10.1097/MD.0000000000005464.
    邓歆, 孟洛明. 基于贝叶斯网络的通信网告警相关性和故障诊断模型[J]. 电子与信息学报, 2007, 29(5): 1182-1186. doi: 10.3724/SP.J.1146.2005.01290.
    DENG Xin and MENG Luoming. Bayesian networks based alarm correlation and fault diagnosis in communication networks[J]. Journal of Electronics Information Technology, 2007, 29(5): 1182-1186. doi: 10.3724 /SP.J.1146.2005.01290.
    CHICKERING D M. Learning Bayesian networks is NP- complete[J]. Networks, 1996, 112(2): 121-130. doi: 10.1007/ 978-1-4612-2404-4_12.
    CARRIGER J F, MARTIN T M, and BARRON M G. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors[J]. Aquatic Toxicology, 2016, 180: 11-24. doi: 10.1016/j.aquatox.2016.09.006.
    ROH M C and LEE S W. Human gesture recognition using a simplified dynamic Bayesian network[J]. Multimedia Systems, 2015, 21(6): 557-568. doi: 10.1007/s00530-014-0414-9.
    CHEN X W, ANANTHA G, and LIN X. Improving Bayesian network structure learning with mutual information based node ordering in the K2 algorithm[J]. IEEE Transactions on Knowledge Data Engineering, 2007, 20(5): 628-640. doi: 10.1109/TKDE.2007.190732.
    SONG K and KIM D W. An efficient node ordering method using the conditional frequency for the K2 algorithm[J]. Pattern Recognition Letters, 2014, 40(4): 80-87. doi: 10.1016/ j.patrec.2013.12.021.
    刘浩然, 孙美婷, 李雷, 等. 基于蚁群节点寻优的贝叶斯网络结构算法研究[J]. 仪器仪表报, 2017, 38(1): 143-150. doi: 10.3969/j.issn.0254-3087.2017.01.019.
    LIU Haoran, SUN Meiting, LI Lei, et al. Bayesian network structure learning algorithm based on ant colony optimization search optimal node ordering[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 143-150. doi: 10.3969/j.issn.0254-3087.2017.01.019.
    KRUSKAL J B. On the shortest spanning subtree of a graph and the traveling salesman problem[J]. Proceedings of the American Mathematical Society, 1956, 7(1): 48-50. doi: 10.2307/2033241.
    HU R S. A hybrid PSO-GA algorithm for job shop scheduling in machine tool production[J]. International Journal of Production Research, 2015, 53(19): 1-27. doi: 10.1080/ 00207543.2014.994714.
    KPPPMAN R and WANG S. Mutual information based labelling and comparing clusters[J]. Scientometrics, 2017, 111(2): 1157-1167. doi: 10.1007/s11192-017-2305-2.
    COOPER G F and HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J] Machine Learning, 1992, 9(4): 309-347. doi: 10.1007/BF00994110.
    LIN S and KERNIGHAN B W. An effective heuristic algorithm for the TSP[J]. Operations Research, 1973, 21(2): 498-516. doi: 10.1287/opre.21.2.498.
    刘广怡, 李鸥, 张大龙. 一种通过结构边界进行贝叶斯网络学习的算法[J].电子与信息学报, 2015, 37(4): 894-899. doi: 10.11999/JEIT140786.
    LIU Guangyi, LI Ou, and ZHANG Dalong. Learning Bayesian network from structure boundaries[J]. Journal of Electronics Information Technology, 2015, 37(4): 894-899. doi: 10.11999/JEIT140786.
    SCHWARZ G. Estimating dimension of a model[J]. Annals of Statistics, 1978, 6(2): 461-464. doi: 10.1214/aos/1176344136.
    BEINLICH I A, SUERMONDT H J, CHAVEZ R M, et al. The ALARM monitoring mystem: A case study with two probabilistic inference techniques for belief networks[J]. Lecture Notes in Medical Informatics, 1989, 38: 247-256. doi: 10.1007/978-3-642-93437-7_28.
    MAJUMDAR J and BHUNIA A K. Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times[J]. Journal of Computational Applied Mathematics, 2011, 235(9): 3063-3078. doi: 10.1016 /j.carm.2010.12.027.
    TSAMARDINOS I, BROWN L E, and ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78. doi: 10.1007/s10994-006-6889-7.
    LARRAAGAL P, POZA M, YURRAMENDI Y, et al. Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1996, 18(9): 912-926. doi: 10.1109/34.537345.
    NIE S, CAMPOS C P D, and JI Q. Efficient learning of Bayesian networks with bounded tree-width[J]. International Journal of Approximate Reasoning, 2016, 80: 412-427. doi: 10.1016/j.ijar.2016.07.002.
  • 加载中
计量
  • 文章访问数:  1165
  • HTML全文浏览量:  157
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-11-29
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回