高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未知杂波条件下样本集校正的势估计概率假设密度滤波算法

杨丹 姬红兵 张永权

杨丹, 姬红兵, 张永权. 未知杂波条件下样本集校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
引用本文: 杨丹, 姬红兵, 张永权. 未知杂波条件下样本集校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
YANG Dan, JI Hongbing, ZHANG Yongquan. A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set[J]. Journal of Electronics & Information Technology, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666
Citation: YANG Dan, JI Hongbing, ZHANG Yongquan. A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set[J]. Journal of Electronics & Information Technology, 2018, 40(4): 912-919. doi: 10.11999/JEIT170666

未知杂波条件下样本集校正的势估计概率假设密度滤波算法

doi: 10.11999/JEIT170666
基金项目: 

国家自然科学基金(61372003, 61503293)

A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set

Funds: 

The National Natural Science Foundation of China (61372003, 61503293)

  • 摘要: 在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算法。首先,提出一种基于狄利克雷过程混合模型(DPMM)类的未知杂波CPHD算法,该算法能够自动选取合适的类数对杂波进行描述,有效降低了杂波空间分布估计的误差。此外,提出样本集校正的思想,并将其引入所提算法,通过去除样本集中由真实目标产生的量测,较好地解决了杂波数过估和目标数低估的问题。与传统算法相比,所提算法的滤波精度更接近于杂波信息匹配情况下的性能,仿真结果验证了其优越性与鲁棒性。
  • LI Bo and PANG Fuwen. Improved probability hypothesis density filter for multitarget tracking[J]. Nonlinear Dynamics, 2014, 76(1): 367-376. doi: 10.1007/s11071-013-1131-1.
    SI Weijian, WANG Liwei, and QU Zhiyu. A measurement- driven adaptive probability hypothesis density filter for multitarget tracking[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1689-1698. doi: 10.1016/j.cja.2015.10.004.
    刘俊, 刘瑜, 何友, 等. 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849.
    LIU Jun, LIU Yu, HE You, et al. Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in clutter[J]. Journal of Electronics Information Technology, 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849.
    徐从安, 何友, 夏沭涛, 等. 基于随机摄动再采样的粒子概率假设密度滤波器[J]. 电子与信息学报, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114.
    XU Cong'an, HE You, XIA Shutao, et al. Particle probability hypothesis density filter based on stochastic perturbation resampling[J]. Journal of Electronics Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT 160114.
    袁常顺, 王俊, 孙进平, 等. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2): 464-471. doi: 10.11999 /JEIT150683.
    YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi- Bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683.
    YANG Jinlong and GE Hongwei. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking[J]. Radar Sonar Navigation Iet, 2013, 7(9): 959-967. doi: 10.1049/iet-rsn.2012. 0357.
    杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634-639. doi: 10.11999/ JEIT160467.
    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467.
    MAHLER Ronald. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 16(2): 11521178. doi: 10.1109 /TAES.2003.1261119.
    吴卫华, 江晶, 冯讯, 等. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法[J]. 电子与信息学报, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    WU Weihua, JIANG Jing, FENG Xun, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse doppler radar[J]. Journal of Electronics Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    VO Ba Tuong, VO Ba Ngu, and CANTONI Antonio. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. doi: 10.1109/TSP.2007. 894241.
    MAHLER Ronald, VO Ba Tuong, and VO Ba Ngu. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513. doi: 10.1109/TSP.2011.2128316.
    BEARD Michael, VO Ba Tuong, and VO Ba Ngu. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J]. IEEE Signal Processing Letters, 2013, 20(4): 323-326. doi: 10.1109/LSP.2013.2244594.
    LIAN Feng, HAN Chongzhao, and LIU Weifeng. Estimating unknown clutter intensity for PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078. doi: 10.1109/TAES.2010.5595616.
    LIU Weifeng, CUI Hailong, and WEN Chenglin. A time- varying clutter intensity estimation algorithm by using Gibbs sampler and BIC[C]. IEEE International Conference on Information Fusion, Heidelberg, Germany, 2016: 1-8.
    NSOESIE Elaine O, LEMAN Scotland C, and MARATHE Marathe V. A Dirichlet process model for classifying and forecasting epidemic curves[J]. Bmc Infectious Diseases, 2014, 14(2): 1-12. doi: 10.1186/1471-2334-14-12.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
    MUTHUKUMARANA Saman, and TIWARI Ram C. Meta- analysis using Dirichlet process[J]. Statistical Methods in Medical Research, 2016, 25(1): 352. doi: 10.1177/ 0962280212453891.
    SUN Xing, YUNG Nelson H C, and LAM Edmund Y. Unsupervised tracking with the doubly stochastic Dirichlet process mixture model[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2594-2599. doi: 10.1109 /TITS.2016.2518212.
    BLEI D M, GRIFFITHS T L, and JORDAN M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 2010, 57(2): 1-30. doi: 10.1145/1667053.1667056.
  • 加载中
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  184
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-12-21
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回