高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互相关抽样分解的分布式非圆信号DOA快速估计

崔维嘉 代正亮 巴斌 鲁航

崔维嘉, 代正亮, 巴斌, 鲁航. 基于互相关抽样分解的分布式非圆信号DOA快速估计[J]. 电子与信息学报, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663
引用本文: 崔维嘉, 代正亮, 巴斌, 鲁航. 基于互相关抽样分解的分布式非圆信号DOA快速估计[J]. 电子与信息学报, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663
CUI Weijia, DAI Zhengliang, BA Bin, LU Hang. Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663
Citation: CUI Weijia, DAI Zhengliang, BA Bin, LU Hang. Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1226-1233. doi: 10.11999/JEIT170663

基于互相关抽样分解的分布式非圆信号DOA快速估计

doi: 10.11999/JEIT170663
基金项目: 

国家自然科学基金(61401513)

Fast DOA Estimation of Distributed Noncircular Sources by Cross-correlation Sampling Decomposition

Funds: 

The National Natural Science Foundation of China (61401513)

  • 摘要: 在非相干分布式非圆信号波达方向(DOA)估计中,针对利用信号非圆特性后输出矩阵维数扩展带来的较大运算量问题,该文提出一种基于互相关抽样分解的DOA快速估计算法。该算法仅需要从子阵间的扩展互相关矩阵中抽样出少量行元素和列元素,构成两个低维子矩阵,进而通过低秩近似分解便可快速地同时求出左右奇异矢量,即分别对应两个子阵的信号子空间,避免了计算整个互相关矩阵及其奇异值分解运算;最后利用两个子阵信号子空间的旋转不变性通过最小二乘得到DOA估计。仿真分析表明,当行列抽样数大于信源数的两倍时,所提算法与直接基于互相关矩阵奇异值分解的非相干分布式非圆信号DOA估计算法性能相近,但复杂度得到了大幅度降低;而相比于传统的低复杂度非相干分布源DOA估计算法,所提算法利用信号非圆特性具有更高的估计性能。
  • KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/ 79.526899.
    樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    FAN Jinyu, GU Hong, Su Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics Information Technology, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
    梁浩, 崔琛, 余剑. 基于ESPRIT算法的十字型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2016, 38(1): 80-89. doi: 10.11999/JEIT150402.
    LIANG Hao, CUI Chen, and YU Jian. Reduced-dimensional DOA estimation based on ESPRIT algorithm in monostatic MIMO Radar with cross array[J]. Journal of Electronics Information Technology, 2016, 38(1): 80-89. doi: 10.11999/ JEIT150402.
    郑植. 分布式信源低复杂度参数估计算法研究[D]. [博士论文], 电子科技大学, 2011.
    ZHENG Zhi. Research on low complexity parameter estimation algorithm for distributed source[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2011.
    L T, TAN F, GAO H, et al. A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems[J]. Signal Processing, 2016, 121(C): 30-45. doi: 10.1016/j.sigpro.2015.10.020.
    XIONG W, PICHERAL J, and MARCOS S. Array geometry impact on music in the presence of spatially distributed sources[J]. Digital Signal Processing, 2017, 63: 155-163. doi: 10.1016/j.dsp.2017.01.001.
    林晓帆, 韦岗. 一种获取非相干分布源空间分布的算法[J]. 电子与信息学报, 2014, 36(2): 260-265. doi: 10.3724/SP.J.1146. 2013.00601.
    LIN Xiaofan and WEI Gang. A method to obtain the spatial distribution of incoherently distributed sources[J]. Journal of Electronics Information Technology ,2014, 36(2): 260-265. doi: 10.3724/SP.J.1146.2013.00601.
    VALAEE S, CHAMPAGNE B, and KABAL P. Parametric localization of distributed sources[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144-2153. doi: 10.1109/78. 414777.
    MENG Y, STOICA P, and WONG K M. Estimation of the directions of arrival of spatially dispersed signals in array signal processing[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(2): 1-9. doi: 10.1049/ip-rsn:19960170.
    SHAHBAZPANAHI S, VALAEE S, and BASTANI M H. Distributed source localization using ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2169-2178. doi: 10.1109/78.950773.
    ZHENG Z and LI G. Fast DOA estimation of incoherently distributed sources by novel propagator[J]. Multidimensional Systems and Signal Processing, 2013, 24(3): 573-581. doi: 10.1007/s11045-012-0185-4.
    HASSANIEN A, SHAHBAZPANAHI S, and GERSHMAN A B. A generalized capon estimator for localization of multiple spread sources[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 280-283. doi: 10.1109/TSP.2003.820089.
    SHAHBAZPANAHI S, VALAEE S, and GERSHMAN A B. A covariance fitting approach to parametric localization of multiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing, 2004, 52(3): 592-600. doi: 10.1109/TSP.2003.822352.
    SIESKUL B T. An asymptotic maximum likelihood for joint estimation of nominal angles and angular spreads of multiple spatially distributed sources[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1534-1538. doi: 10.1109/ TVT.2009.2040006.
    杨学敏, 李广军, 郑植. 基于稀疏表示的相干分布式非圆信号的参数估计[J]. 电子与信息学报, 2014, 36(1): 164-168. doi: 10.3724/SP.J.1146.2013.00444.
    YANG Xuemin, LI Guangjun, and ZHENG Zhi. Parameters estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics Information Technology, 2014, 36(1): 164-168. doi: 10.3724 /SP.J.1146.2013.00444.
    GAN L, GU J F, and WEI P. Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique[J]. IEEE Antennas Wireless Propagation Letters, 2008, 7: 385-388. doi: 10.1109/LAWP.2008.2000875.
    尹洁昕, 吴瑛, 王鼎. 基于辅助阵元的非圆信号自校正算法及其性能分析[J]. 通信学报, 2014, 34(2): 153-165. doi: 10.3969/ j.issn.1000-436x.2014.02.020.
    YIN Jiexin, WU Ying, and WANG Ding. Auto-calibration method and performance analysis for noncircular sources based on instrumental sensors[J].Journal on Communications, 2014, 34(2): 153-165. doi: 10.3969/j.issn.1000-436x.2014.02. 020.
    ZHANG L, L W, ZHANG X, et al. 2D-DOA estimation of noncircular signals for uniform rectangular array via NC- PARAFAC method[J]. International Journal of Electronics, 2016, 103(11): 1839-1856. doi: 10.1080/00207217.2016. 1138535.
    YANG X, LI G, ZHENG Z, et al. 2D DOA estimation of coherently distributed noncircular sources[J]. Wireless Personal Communications, 2014, 78(2): 1095-1102. doi: 10.1007/s11277-014-1803-2.
    HASSEN S B, BELLILI F, SAMET A, et al. Cramer-Rao lower bounds for angular parameters estimates from incoherently distributed signals generated by noncircular sources[C]. IEEE International Conference on Ubiquitous Wireless Broadband. IEEE, Montreal, Canada, 2015: 1-5. doi: 10.1109/ICUWB.2015.7324433.
    HASSEN S B, BELLILI F, SAMET A, et al. Estimation of angular spreads and mean angles of arrival for multiple incoherently-distributed noncircular sources[C]. IEEE International Conference on Ubiquitous Wireless Broadband. IEEE, Montreal, Canada, 2015: 1-5. doi: 10.1109/ICUWB. 2015.7324449.
    YANG X, LI G, CHI C K, et al. Central DOA estimation of incoherently distributed noncircular sources with cross-correlation matrix[J]. Circuits Systems Signal Processing, 2015, 34(11): 3697-3707. doi: 0.1007/s00034-015- 0023-7.
    FERREIRA T N, CAMPOS M L R D, and NETTO S L. Covariance-based DoA estimation in a Krylov subspace[J]. Circuits Systems Signal Processing, 2015, 34(7): 2363-2379. doi: 10.1007/s00034-014-9966-3.
    黄磊, 吴顺君, 张林让, 等. 快速子空间分解方法及其维数的快速估计[J]. 电子学报, 2005, 33(6): 977-981.
    HUANG L, WU S J, ZHANG L R, et al. Fast method for subspace decomposition and its dimension estimation[J]. Acta Electronica Sinica, 2005, 33(6): 977-981.
    HUANG L, LONG T, MAO E, et al. MMSE-based MDL method for robust estimation of number of sources without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 4135-4142. doi: 10.1109/TSP.2009. 2024043.
  • 加载中
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  102
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回