高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合密集卷积与空间转换网络的手势识别方法

马杰 张绣丹 杨楠 田亚蕾

马杰, 张绣丹, 杨楠, 田亚蕾. 融合密集卷积与空间转换网络的手势识别方法[J]. 电子与信息学报, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
引用本文: 马杰, 张绣丹, 杨楠, 田亚蕾. 融合密集卷积与空间转换网络的手势识别方法[J]. 电子与信息学报, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
MA Jie, ZHANG Xiudan, YANG Nan, TIAN Yalei. Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks[J]. Journal of Electronics & Information Technology, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627
Citation: MA Jie, ZHANG Xiudan, YANG Nan, TIAN Yalei. Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks[J]. Journal of Electronics & Information Technology, 2018, 40(4): 951-956. doi: 10.11999/JEIT170627

融合密集卷积与空间转换网络的手势识别方法

doi: 10.11999/JEIT170627
基金项目: 

国家自然科学基金(61203245),河北省自然科学基金(F2012202027)

Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks

Funds: 

The National Natural Science Foundation of China (61203245), The Natural Science Foundation of Hebei Province (F2012202027)

  • 摘要: 手势识别作为人机交互的方式之一,在人工智能日益发展的今天备受瞩目。针对手势旋转、平移、缩放等形变导致识别率偏低的问题,该文基于密集卷积网络(Densenet)与空间转换网络(STN)提出了一种新型的网络结构Densenet_V2,先利用空间转换网络对输入的样本和特征图进行空间变换和对齐,再利用密集卷积网络自动提取手势的有效特征,最后通过线性分类器对手势进行分类。为防止网络模型对样本数据集过度拟合,对网络进行训练时在损失函数中加入L2正则项以实现权重衰减。在Marcel手势库上进行多次实验。实验结果表明,Densenet_V2可以提高对静态形变手势的识别率。
  • PIYUSH K, SIDDHARTH S R, and Anupam A. Hand data glove: A new generation real-time mouse for human- computer interaction[C]. International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, Jharkand, India, 2012: 750-755. doi: 10.1109/RAIT.2012. 6194548.
    WEI W and JING P. Hand segmentation using skin color and background information[C]. International Conference on Machine Learning and Cybernetics, Xi,an, China, 2012: 1487-1492. doi: 10.1109/ICMLC.2012.6359584.
    阮晓钢, 林佳, 于乃功, 等. 基于多线索的运动手部分割方法[J]. 电子与信息学报, 2017, 39(5): 1088-1095. doi: 10.11999/ JEIT160730.
    RUAN Xiaogang, LIN Jia, YU Naigong, et al. Moving hand segmentation based on multi-cues[J]. Journal of Electronics Information Technology, 2017, 39(5): 1088-1095. doi: 10. 11999/JEIT160730.
    LIU Y, YIN Y, and ZHANG S. Hand gesture recognition based on HU moments in interaction of virtual reality[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China, 2012: 145-148. doi: 10.1109/IHMSC.2012.42.
    DARDAS N H and GEORGANAS N D. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J]. IEEE Transactions on Instrumentation Measurement, 2011, 60(11): 3592-3607. doi: 10.1109/TIM.2011.2161140.
    杨学文, 冯志全, 黄忠柱, 等. 结合手势主方向和类- Hausdorff距离的手势识别[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
    YANG Xuewen, FENG Zhiquan, HUANG Zhongzhu, et al. Gesture recognition based on combining main direction of gesture and Hausdorff-like distance[J]. Journal of Computer- Aided Design Computer Graphics, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
    刘淑萍, 刘羽, 於俊, 等. 结合手指检测和HOG特征的分层静态手势识别[J]. 中国图象图形学报, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
    LIU Shuping, LIU Yu, YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of Image and Graphics, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
    LIN H I, HSU M H, and CHEN W K. Human hand gesture recognition using a convolution neural network[C]. IEEE International Conference on Automation Science and Engineering, Taipei, China, 2014: 1038-1043. doi: 10.1109/ CoASE.2014.6899454.
    杜堃, 谭台哲. 复杂环境下通用的手势识别方法[J]. 计算机应用, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn.1001-9081. 2016.07.1965.
    DU Kun and TAN Taizhe. General method for gesture recognition in complex environment[J]. Journal of Computer Applications, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn. 1001-9081.2016.07.1965.
    PYO J, JI S, and YOU S. Depth-based hand gesture recognition using convolutional neural networks[C]. International Conference on Ubiquitous Robots and Ambient Intelligence, Xi,an, China, 2016: 225-227. doi: 10.1109/URAI. 2016.7625742.
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791.
    JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[OL]. https://arxiv.org/abs/ 1506.02025v3,2015.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Massachusetts, USA: MIT Press, 2016: 231-234.
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  176
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回