PIYUSH K, SIDDHARTH S R, and Anupam A. Hand data glove: A new generation real-time mouse for human- computer interaction[C]. International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, Jharkand, India, 2012: 750-755. doi: 10.1109/RAIT.2012. 6194548.
|
WEI W and JING P. Hand segmentation using skin color and background information[C]. International Conference on Machine Learning and Cybernetics, Xi,an, China, 2012: 1487-1492. doi: 10.1109/ICMLC.2012.6359584.
|
阮晓钢, 林佳, 于乃功, 等. 基于多线索的运动手部分割方法[J]. 电子与信息学报, 2017, 39(5): 1088-1095. doi: 10.11999/ JEIT160730.
|
RUAN Xiaogang, LIN Jia, YU Naigong, et al. Moving hand segmentation based on multi-cues[J]. Journal of Electronics Information Technology, 2017, 39(5): 1088-1095. doi: 10. 11999/JEIT160730.
|
LIU Y, YIN Y, and ZHANG S. Hand gesture recognition based on HU moments in interaction of virtual reality[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China, 2012: 145-148. doi: 10.1109/IHMSC.2012.42.
|
DARDAS N H and GEORGANAS N D. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J]. IEEE Transactions on Instrumentation Measurement, 2011, 60(11): 3592-3607. doi: 10.1109/TIM.2011.2161140.
|
杨学文, 冯志全, 黄忠柱, 等. 结合手势主方向和类- Hausdorff距离的手势识别[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
|
YANG Xuewen, FENG Zhiquan, HUANG Zhongzhu, et al. Gesture recognition based on combining main direction of gesture and Hausdorff-like distance[J]. Journal of Computer- Aided Design Computer Graphics, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
|
刘淑萍, 刘羽, 於俊, 等. 结合手指检测和HOG特征的分层静态手势识别[J]. 中国图象图形学报, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
|
LIU Shuping, LIU Yu, YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of Image and Graphics, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
|
LIN H I, HSU M H, and CHEN W K. Human hand gesture recognition using a convolution neural network[C]. IEEE International Conference on Automation Science and Engineering, Taipei, China, 2014: 1038-1043. doi: 10.1109/ CoASE.2014.6899454.
|
杜堃, 谭台哲. 复杂环境下通用的手势识别方法[J]. 计算机应用, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn.1001-9081. 2016.07.1965.
|
DU Kun and TAN Taizhe. General method for gesture recognition in complex environment[J]. Journal of Computer Applications, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn. 1001-9081.2016.07.1965.
|
PYO J, JI S, and YOU S. Depth-based hand gesture recognition using convolutional neural networks[C]. International Conference on Ubiquitous Robots and Ambient Intelligence, Xi,an, China, 2016: 225-227. doi: 10.1109/URAI. 2016.7625742.
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791.
|
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[OL]. https://arxiv.org/abs/ 1506.02025v3,2015.
|
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
|
GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Massachusetts, USA: MIT Press, 2016: 231-234.
|