高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回归分析和主成分分析的噪声方差估计方法

吴疆 尤飞 蒋平

吴疆, 尤飞, 蒋平. 基于回归分析和主成分分析的噪声方差估计方法[J]. 电子与信息学报, 2018, 40(5): 1195-1201. doi: 10.11999/JEIT170624
引用本文: 吴疆, 尤飞, 蒋平. 基于回归分析和主成分分析的噪声方差估计方法[J]. 电子与信息学报, 2018, 40(5): 1195-1201. doi: 10.11999/JEIT170624
WU Jiang, YOU Fei, JIANG Ping. Noise Variance Estimation Method Based on Regression Analysis and Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1195-1201. doi: 10.11999/JEIT170624
Citation: WU Jiang, YOU Fei, JIANG Ping. Noise Variance Estimation Method Based on Regression Analysis and Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1195-1201. doi: 10.11999/JEIT170624

基于回归分析和主成分分析的噪声方差估计方法

doi: 10.11999/JEIT170624
基金项目: 

国家自然科学基金(11641002),榆林市科技计划项目(Gy13-12),陕西省教育厅科研项目(11JK0636)

Noise Variance Estimation Method Based on Regression Analysis and Principal Component Analysis

Funds: 

The National Natural Science Foundation of China (11641002), The Science and Technology Program of Yulin (Gy13-12), The Program of Education Commission of Shaanxi Province (11JK0636)

  • 摘要: 准确可靠的噪声强度估计是数字图像处理领域中一个重要的研究课题。噪声估计的难点在于如何提取用于估计的纯噪声信息,近几年,许多算法采用主成分分析技术来避免图像纹理信息的干扰,用最小特征值来估计噪声方差,可以有效地减少图像纹理信息对估计结果的影响,所以这类方法对于高频图像(丰富纹理图像)效果很好。由于图像块数量有限,最小特征值实际上比真实噪声方差小,而且图像块数量越少,偏差越大。如果直接把最小特征值作为估计方差,则容易低估计高噪声。该文通过回归分析确定最小特征值跟真实噪声方差的比值和图像块数量呈幂函数关系,因此可以通过最小特征值和幂函数关系得到真实的噪声方差。实验表明该文方法既能处理高频图像,又适合各种噪声水平,同时也能处理乘性高斯噪声。
  • HANIF M and SEGHOUANE A K. Non-local noise estimation for adaptive image denoising[C]. IEEE Digital Image Computing: Techniques and Applications, Adelaide, AUS, 2015: 1-5. doi: 10.1109/DICTA.2015.7371290.
    蒋平, 张建州. 基于局部最大梯度的无参考图像质量评价[J]. 电子与信息学报, 2015, 37(11): 2587-2593. doi: 10.11999/ JEIT141447.
    JIANG P and ZHANG J Z. No-reference image quality assessment based on local maximum gradient[J]. Journal of Electronics Information Technology, 2015, 37(11): 2587-2593. doi: 10.11999/JEIT141447.
    KUMAR K S, SREENIVASULU G, and RAJAN S V. Block based SVD approach for additive white Gaussian noise level estimation in satellite images[C]. 3rd International Conference on Computing for Sustainable Global Development, New Delhi, IND, 2016: 1464-1468.
    DONOHO D. De-noising by soft-thresholding[J]. IEEE Transaction on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009.
    LIU W and LIN W. Additive white Gaussian noise level estimation in SVD domain for images[J]. IEEE Transactions on Image Processing, 2013, 22(3): 872-883. doi: 10.1109/TIP. 2012.2219544.
    GHAZI M M and ERDOGAN H. Image noise level estimation based on higher-order statistics[J]. Multimedia Tools Applications, 2016, 76(2): 1-19. doi: 10.1007/s11042- 015-3169-1.
    IMMERKR J. Fast noise variance estimation[J]. Computer Vision and Image Understanding, 1996, 64(2): 300-302. doi: 10.1006/cviu.1996.0060.
    RAKHSHANFAR M and AMER A. Estimation of Gaussian, Poissonian-Gaussian, and processed visual noise and its level function[J]. IEEE Transactions on Image Processing, 2016, 25(9): 4172-4185. doi: 10.1109/TIP.2016.2588320.
    MIKOLAJCZAK G and PEKSINSKI J. Estimation of the variance of noise in digital images using a median filter[C]. 39th International Conference on Telecommunications and Signal Processing, Vienna, AUT, 2016: 489-492. doi: 10.1109 /TSP.2016.7760927.
    BOUHRARA M, BONNY J M, ASHINSKY B G, et al. Noise estimation and reduction in magnetic resonance imaging using a new multispectral nonlocal maximum-likelihood filter[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 181-193. doi: 10.1109/TMI.2016.2601243.
    DONG L, ZHOU J T, and TANG Y Y. Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity[J]. IEEE Transactions on Image Processing, 2017, 26(2): 1017-1030. doi: 10.1109/TIP.2016. 2639447.
    AMER A and DUBOIS E. Fast and reliable structure- oriented video noise estimation[J]. IEEE Transactions on Circuits System and Video Technology, 2005, 15(1): 113-118. doi: 10.1109/TCSVT.2004.837017.
    JIANG P and ZHANG J Z. Fast and reliable noise estimation algorithm based on statistical hypothesis test[C]. 2012 IEEE Vision Communication and Image Processing, San Diego, USA, 2012: 27-30. doi: 10.1109/VCIP.2012.6410754.
    JIANG P and ZHANG J Z. A noise estimation method based on principal components analysis using intensity- homogeneity and sharpness[J]. Information-An International Interdisciplinary Journal, 2012, 15(2): 805-813.
    JIANG P and ZHANG J Z. Fast and reliable noise level estimation based on local statistic[J]. Pattern Recognition Letters, 2016, 78: 8-13. doi: 10.1016/j.patrec.2016.03.026.
    LIU X, TANAKA M, and OKUTOMI M. Noise level estimation using weak textured patches of a single noisy image[C]. 19th IEEE International Conference on Image Processing, Orlando, USA, 2012: 665-668. doi: 10.1109/ICIP. 2012.6466947.
    PYATYKH S, HESSER J, and ZHENG L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2013, 22(3): 687-699. doi: 10.1109/TIP.2012.2221728.
    CHEN G, ZHU F, and HENG P A. An efficient statistical method for image noise level estimation[C]. 15th International Conference on Computer Vision, Santiago, Chile, 2015: 477-485. doi: 10.1109/ICCV.2015.62.
    PONOMARENKO N, JIN L, IEREMEIEV O, et al. Image database TID2013: Peculiarities, results and perspectives[J]. Signal Processing: Image Communication, 2015, 30: 57-77. doi: 10.1016/j.image.2014.10.009.
    ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. doi: 10.1109/TPAMI.2010.161.
  • 加载中
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  233
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2017-11-24
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回