高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于潜在主题的混合上下文推荐算法

李平 张路遥 曹霞 胡检华

吴亿锋, 王彤, 吴建新, 代保全, 同亚龙. 基于道路信息的知识辅助空时自适应处理[J]. 电子与信息学报, 2015, 37(3): 613-618. doi: 10.11999/JEIT140626
引用本文: 李平, 张路遥, 曹霞, 胡检华. 基于潜在主题的混合上下文推荐算法[J]. 电子与信息学报, 2018, 40(4): 957-963. doi: 10.11999/JEIT170623
Wu Yi-Feng, Wang Tong, Wu Jian-Xin, Dai Bao-Quan, Tong Ya-Long. A Knowledge Aided Space Time Adaptive Processing Based on Road Network Data[J]. Journal of Electronics & Information Technology, 2015, 37(3): 613-618. doi: 10.11999/JEIT140626
Citation: LI Ping, ZHANG Luyao, CAO Xia, HU Jianhua. Hybrid Context Recommendation Algorithm Based on Latent Topic[J]. Journal of Electronics & Information Technology, 2018, 40(4): 957-963. doi: 10.11999/JEIT170623

基于潜在主题的混合上下文推荐算法

doi: 10.11999/JEIT170623
基金项目: 

湖南省教育厅资助重点项目(14A004)

Hybrid Context Recommendation Algorithm Based on Latent Topic

Funds: 

The Scientific Research Fund of Hunan Provincial Education Department (14A004)

  • 摘要: 针对单个环境上下文中项目访问记录稀疏的问题,推荐系统难以获取与当前环境上下文关联的用户偏好。该文设计了一种新的上下文关联性推荐(CTRR)算法。CTRR算法通过CTRR_LDA模型求解推荐项目出现在特定环境上下文的概率,并结合上下文后过滤推荐算法,对用户进行推荐。CTRR_LDA模型是在(LDA)模型的基础上,结合环境上下文和项目特征上下文,提出的项目与环境上下文的关联概率模型。该模型将环境上下文划分为多个环境上下文因子,每个环境上下文因子表示为K维的主题分布,挖掘环境上下文因子中项目出现的潜在主题特征。利用LDOS-CoMoDa网站上真实的电影数据集进行实验,验证了算法的可靠性。
  • ABOWD G D, DEY A K, BROWN P J, et al. Towards a better understanding of context and context-awareness[C]. International Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany, 1999: 304-307.
    BALTRUNA L, LUDWIG B, PEER S, et al. Context relevance assessment and exploitation in mobile recommender systems[J]. Personal and Ubiquitous Computing, 2012, 16(5): 507-526. doi: 10.1007/s00779- 011-0417.
    徐风苓, 孟祥武, 王立才. 基于移动用户上下文相似度的协同过滤推荐算法[J]. 电子与信息学报, 2011, 33(11): 2785-2789. doi: 10.3724/SP.J.1146.2011.00384.
    XU Fengling, MENG Xiangwu, and WANG Licai. A collaborative filtering recommendation algorithm based on context similarity for mobile users[J]. Journal of Electronics Information Technology, 2011, 33(11): 2785-2789. doi: 10.3724/SP.J.1146.2011.00384.
    王立才, 孟祥武, 张玉洁. 上下文感知推荐系统研究[J].软件学报, 2012, 23(1): 1-20. doi: 10.3724/SP.J.1001.2012.04100.
    WANG Licai, MENG Xiangwu, and ZHANG Yujie. Context- aware recommender system: A survey of the state-of-art and possible extensions[J]. Chinese Journal of Software, 2012, 23(1): 1-20. doi: 10.3724/SP.J.1001.2012.04100.
    WU W, ZHAO J, ZHANG C, et al. Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding[J]. Knowledge-Based Systems, 2017, 128(C): 71-77. doi: 10.1016/j.knosys.2017.04.011.
    ZOU B, LI C, TAN L, et al. GPUTENSOR: Efficient tensor factorization for context-aware recommendations[J]. Information Sciences, 2015, 299(11): 159-177. doi: 10.1016/ j.ins.2014.12.004.
    WU H, YUE K, LIU X, et al. Context-aware recommendation via graph-based contextual modeling and postfiltering[J]. International Journal of Distributed Sensor Networks, 2015, 11(3): 16-26. doi: 10.1155/2015/613612.
    ALHAMID M F, RAWASHDEH M, DONG H, et al. Exploring latent preferences for context-aware personalized recommendation systems[J]. IEEE Transactions on Human- Machine Systems, 2016, 46(4): 615-623. doi: 10.1109/THMS. 2015.2509965.
    ALHAHYARI M and KOCHUT K. Semantic context-aware recommendation via topic models leveraging linked open data[C]. International Conference of Web Information Systems Engineering, Lugano, Switzerland, 2016: 263-277.
    AIMUDENA R I, GUILLERMO J D, and MERCEDES G A. A Semantically enriched context-aware OER recommendation strategy and its application to a computer Science OER repository[J]. IEEE Transactions on Education, 2014, 57(4): 255-260. doi: 10.1109/TE.2014.2309554.
    YU K, ZHANG B, ZHU H, et al. Towards personalized context-aware recommendation by mining context logs through topic models[C]. Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Kuala Lumpur, Malaysia, 2012: 431-443.
    ZHU H, CHEN E, XIONG H, et al. Mining mobile user preferences for personalized context-aware recommendation [J]. ACM Transactions on Intelligent Systems Technology, 2014, 5(4): 1-27. doi: 10.1145/2532515.
    YIN H, CUI B, CHEN L, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): 1-41. doi: 10.1145/2663356.
    YIN H, CUI B, CHEN L, et al. Dynamic user modeling in social media systems[J]. ACM Transactions on Information Systems, 2015, 33(3): 1-44. doi: 10.1145/2699670.
    BLEI D M, NG A Y, and JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(3): 993-1022.
    ODIC A, TKALCIC M, KOSIR A, et al. Predicting and detecting the relevant contextual information in a movie-recommender system[J]. Interacting with Computers, 2013, 25(1): 74-90. doi: 10.1093/iwc/iws003.
  • 期刊类型引用(5)

    1. 张琪,沈明威,李建峰. 基于稀疏重构的KA-STAP杂噪协方差矩阵高精度估计算法. 国外电子测量技术. 2019(03): 14-18 . 百度学术
    2. 王晓明,李军,张圣鹋,卢燕,张永杰. 基于稀疏恢复谱相似度的自适应样本筛选算法. 系统工程与电子技术. 2018(05): 976-981 . 百度学术
    3. 许华健,杨志伟,廖桂生,田敏. 一种稳健的非均匀杂波协方差矩阵估计方法. 电子与信息学报. 2017(05): 1036-1043 . 本站查看
    4. 张圣鹋,何子述,李军,赵翔. 一种稳健的知识辅助STAP色加载系数优化算法. 电子与信息学报. 2016(08): 1942-1949 . 本站查看
    5. 刘汉伟,张永顺,王强,吴亿锋. 基于稀疏重构的机载雷达训练样本挑选方法. 系统工程与电子技术. 2016(07): 1532-1537 . 百度学术

    其他类型引用(13)

  • 加载中
计量
  • 文章访问数:  1636
  • HTML全文浏览量:  237
  • PDF下载量:  194
  • 被引次数: 18
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2017-11-20
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回