高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于M值概率分布的网络视频流分类

杨凌云 董育宁 王再见 汤萍萍

杨凌云, 董育宁, 王再见, 汤萍萍. 基于M值概率分布的网络视频流分类[J]. 电子与信息学报, 2018, 40(5): 1094-1100. doi: 10.11999/JEIT170617
引用本文: 杨凌云, 董育宁, 王再见, 汤萍萍. 基于M值概率分布的网络视频流分类[J]. 电子与信息学报, 2018, 40(5): 1094-1100. doi: 10.11999/JEIT170617
YANG Lingyun, DONG Yuning, WANG Zaijian, TANG Pingping. Network Video Traffic Classification Based on Probability Distribution of M Value[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1094-1100. doi: 10.11999/JEIT170617
Citation: YANG Lingyun, DONG Yuning, WANG Zaijian, TANG Pingping. Network Video Traffic Classification Based on Probability Distribution of M Value[J]. Journal of Electronics & Information Technology, 2018, 40(5): 1094-1100. doi: 10.11999/JEIT170617

基于M值概率分布的网络视频流分类

doi: 10.11999/JEIT170617
基金项目: 

国家自然科学基金(61271233, 61401004, 61601005),华为HIRP创新项目,安徽师范大学博士科研启动金项目(2016XJJ129)

Network Video Traffic Classification Based on Probability Distribution of M Value

Funds: 

The National Natural Science Foundation of China (61271233, 61401004, 61601005), The HIRP Program of Huawei Technology Co. Ltd, The Ph.D Programs Foundation of Anhui Normal University (2016XJJ129)

  • 摘要: 为了改善网络视频流的细粒度分类效果,该文分析视频流传输过程中的特征变化与流分类之间的关系。根据不同类型的视频流具有不同的下行传输速率变化模式,提出一种新的基于下行速率传输的视频流分类特征--M值概率分布,并使用支持向量机(SVM)实现网络视频流的分类。实验结果表明,M值概率分布相比较于已有的常见流特征,可以更好地实现6种典型的网络视频流分类。
  • KESAVARAJ G and SUKUMARAN S. A study on classification techniques in data mining[C]. Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies, Tiruchengode, India, 2014: 1-7. doi: 10.1109/ICCCNT.2013. 6726842.
    ANDERSSON R. Classification of video traffic: An evaluation of video traffic classification using random forests and gradient boosted trees[D]. [Master dissertation], Karlstad University, 2017.
    GHOFRANI F, JAMSHIDI A, and KESHAVARZ- HADDAD A. Internet traffic classification using Hidden Naive Bayes model[C]. Proceedings of the 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 2015: 235-240. doi: 10.1109/IranianCEE.2015.7146216.
    MUNTHER A, ALALOUSI A, NIZAM S, et al. Network traffic classificationA comparative study of two common decision tree methods: C4.5 and Random forest[C]. Proceedings of the 2nd International Conference on Electronic Design, Penang, Malaysia, 2014: 210-214. doi: 10.1109/ICED.2014.7015800.
    HAO Shengnan, HU Jing, LIU Songyin, et al. Improved SVM method for internet traffic classification based on feature weight learning[C]. Proceedings of the Fourth International Conference on Control, Automation and Information Sciences (ICCAIS) Changshu, China, 2015: 102-106. doi: 10.1109/ICCAIS.2015.7338641.
    VINUSHREE N, HEMALATHA B, and KALIAPPAN V K. Efficient kernel-based fuzzy C-means clustering for pest detection and classification[C]. Proceedings of the 2014 Computing and Communication Technologies (WCCCT), Tamilnadu, India, 2014: 179-181. doi: 10.1109/WCCCT. 2014.61.
    ZHANG Shichao, LI Xuelong, ZONG Ming, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017: 1-12. doi: 10.1109/TNNLS.2017. 2673241.
    WANG Pu, LIN Shihchun, and LUO Min. A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs[C]. Proceedings of the 13th IEEE International Conference on Services Computing, San Francisco, USA, 2016: 760-765. doi: 10.1109/SCC.2016.133.
    GLENNAN T, LECKIE C, and ERFANI S M. Improved classification of known and unknown network traffic flows using semi-supervised machine learning[C]. Proceedings of the Australasian Conference on Information Security and Privacy, QLD, Australia, 2016: 493-501. doi: 10.1007/978- 3-319-40367-0-33.
    BAGHERZADEH-KHIAVANI F, RAMEZANKHANI A, AZIZI F, et al. A tutorial on variable selection for clinical prediction models: Feature selection methods in data mining could improve the results[J]. Journal of Clinical Epidemiology, 2016(71): 76-85. doi: 10.1016/j.jclinepi.2015. 10.002.
    MOORE A, ZUEV D, and CROGAN M. Discriminators for use in flow-based classification[R]. Queen Mary University of London, 2013: 1-14.
    ZhANG JUN, YANG XIANG, WANG YU, et al. Network traffic classification using correlation information[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(1): 104-117. doi: 10.1109/TPDS.2012.98.
    RAVEENDRAN R and MENON R R. A novel aggregated statistical feature based accurate classification for internet traffic[C]. Proceedings of the 16 International Conference on Data Mining and Advanced Computing (SAPIENCE), Ernakulam, India, 2016: 225-232. doi: 10.1109/SAPIENCE. 2016.7684123.
    MIAO Yuantian, RUAN Zichan, PAN Lei, et al. Comprehensive analysis of network traffic data[C]. 16th IEEE International Conference on Computer and Information Technology, Nadi, FIji, 2017: 423-430. doi: 10.1109/TPDS.2012.98.
    THAY C, VISOOTTIVISETH V, and MONGKOLLUKSAMEE S. P2P traffic classification for residential network[C]. Proceedings of the 2015 Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 2015: 1-6. doi: 10.1109/ICSEC.2015.7401433.
    HUANG Yinxiang, LI Yun, and QIANG Baohua. Internet traffic classification based on min-max ensemble feature selection[C]. 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 2016: 3485-3492. doi: 10.1109/IJCNN.2016.7727646.
    AUGUSTIN B and MELLOUK A. On traffic patterns of http applications[C]. Proceedings of the Global Telecommunications Conference (GLOBECOM 2011), Texas, USA, 2011: 1-6. doi: 10.1109/GLOCOM.2011.6134438.
    WANG Zaijian, DONG Yuning, et al. Internet video traffic classification using QoS features[C]. Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), Hawaii, USA, 2016: 1-5. doi: 10.1109/ICCNC.2016.7440599.
    SHAFIG M, YU X, and LAGHARI A A. WeChat text messages service flow traffic classification using machine learning technique[C]. Proceedings of the 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech, 2016: 1-5. doi: 10.1109/ICITCS.2016.7740379.
    DUBIN R, HADAR O, RICHMAN I, et al. Video quality representation classification of Safari encrypted DASH streams[C]. Proceedings of the 1st Digital Media Industry Academic Forum (DMIAF). Santorini, Greece, 2016: 213-216. doi: 10.1109/DMIAF.2016.7574935.
    NOVAKOVIC J. Toward optimal feature selection using ranking methods and classification algorithms[J]. Yugoslav Journal of Operations Research, 2011, 21(1): 119-135. doi: 10.2298/YJOR1101119N.
    HALL M A. Correlation-based feature selection for machine learning[D]. [Ph.D. dissertation], The University of Waikato, 1999.
    KONONENKO I,IMEC E, and ROBINK-IKONJA M. Overcoming the myopia of inductive learning algorithms with RELIEFF[J]. Applied Intelligence, 1997, 7(1): 39-55. doi: 10.1023/A:1008280620621.
    Telecommunication Standardization Sector of ITU-2013, Parametric non-intrusive assessment of audiovisual media streaming quality[S]. 2013.
  • 加载中
计量
  • 文章访问数:  1139
  • HTML全文浏览量:  112
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2018-02-23
  • 刊出日期:  2018-05-19

目录

    /

    返回文章
    返回