高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别

郭立民 寇韵涵 陈涛 张明

郭立民, 寇韵涵, 陈涛, 张明. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
引用本文: 郭立民, 寇韵涵, 陈涛, 张明. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
GUO Limin, KOU Yunhan, CHEN Tao, ZHANG Ming. Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588
Citation: GUO Limin, KOU Yunhan, CHEN Tao, ZHANG Ming. Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder[J]. Journal of Electronics & Information Technology, 2018, 40(4): 875-881. doi: 10.11999/JEIT170588

基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别

doi: 10.11999/JEIT170588
基金项目: 

国家自然科学基金(61571146),中央高校基本科研业务费专项资金(HEUCFP201769)

Low Probability of Intercept Radar Signal Recognition Based on Stacked Sparse Auto-encoder

Funds: 

The National Natural Science Foundation of China (61571146), The Fundamental Research Funds for the Central Universities (HEUCFP201769)

  • 摘要: 针对低截获概率(LPI)雷达信号识别率低且特征提取困难的问题,该文提出一种基于Choi-Williams分布(CWD)和栈式稀疏自编码器(sSAE)的自动分类识别系统。该系统从反映信号本质特征的时频图像入手,首先对LPI雷达信号进行CWD时频分析,获取2维时频图像;然后对得到的时频原始图像进行预处理,并把预处理后的图像送入多层稀疏自编码器(SAE)进行离线训练;最后把SAE自动提取的特征输入softmax分类器,实现雷达信号的在线分类识别。仿真结果表明,信噪比为时,该系统对8种LPI雷达信号(LFM, BPSK, Costas, Frank和T1~T4)的整体平均识别率达到96.4%,在低信噪比条件下明显优于人工设计提取信号特征的识别方法。
  • SCHLEHER D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3-6. doi: 10.1109/MAES.2006.1635166.
    PHILLIP E P. Detecting and Classifying Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    王星, 周一鹏, 周东青, 等. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
    WANG Xing, ZHOU Yipeng, ZHOU Dongqing, et al. Research on low probability of intercept radar signal recognition using deep belief network and bispectra diagonal slice[J]. Journal of Electronics Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031.
    LUNDEN J and KOIVUNEN V. Automatic radar waveform recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 124-136. doi: 10.1109/JSTSP.2007. 897055.
    ZHANG Ming, LIU Lutao, DIAO Ming, et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16(10): 1682-1706. doi: 10.3390/s16101682.
    HINTON G, OSINDERO S, TEH Y W, et al. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527.
    BENGIO Y, LAMBIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems, Hyatt Regency Vancouver, 2007: 153-160.
    LECUN Y, BENGIO Y, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72(2011): 1-19. doi: 10.1371/journal.pone.0006098.
    TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438-2442. doi: 10.1109/LGRS.2015.2482520.
    ZHANG Lu, MA Wenping, ZHANG Dan, et al. Stacked sparse autoencoder in PolSAR data classification using local spatial information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1359-1363. doi: 10.1109/LGRS.2016. 2586109.
    SUN Wenjun, SHAO Siyu, ZHAO Rui, et al. A sparse auto- encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89: 171-178. doi: 10.1016/j.measurement.2016.04007.
    FENG Zhipeng, LIANG Ming, CHU Fulei, et al. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. doi: 10.1016/j.ymssp.2013.01017.
  • 加载中
计量
  • 文章访问数:  1699
  • HTML全文浏览量:  298
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-19
  • 修回日期:  2017-11-21
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回