高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法

陈怡君 李开明 张群 罗迎

陈怡君, 李开明, 张群, 罗迎. 稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法[J]. 电子与信息学报, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
引用本文: 陈怡君, 李开明, 张群, 罗迎. 稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法[J]. 电子与信息学报, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
CHEN Yijun, LI Kaiming, ZHANG Qun, LUO Ying. Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals[J]. Journal of Electronics & Information Technology, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554
Citation: CHEN Yijun, LI Kaiming, ZHANG Qun, LUO Ying. Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals[J]. Journal of Electronics & Information Technology, 2018, 40(3): 509-516. doi: 10.11999/JEIT170554

稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法

doi: 10.11999/JEIT170554
基金项目: 

国家自然科学基金(61631019, 61471386),陕西省青年科技新星计划(2016KJXX-49)

Adaptive Measurement Matrix Optimization for ISAR Imaging with Sparse Frequency-stepped Chirp Signals

Funds: 

The National Natural Science Foundation of China (61631019, 61471386), The Youth Science and Technology New Star Program of Shaanxi Province (2016KJXX-49)

  • 摘要: 基于压缩感知(CS)理论的稀疏线性调频步进信号(SFCS)逆合成孔径雷达(ISAR)成像技术能够从少量观测数据中高概率重构出目标像,其中,观测矩阵的优化设计是提高成像质量和减少观测数据量的有效途径。然而,现有的观测矩阵优化设计研究通常没有考虑目标特征信息的有效利用,对目标的自适应能力不足。因此,该文在充分利用目标特征信息的基础上,结合稀疏SFCS信号的实际物理观测过程,提出一种ISAR成像观测矩阵自适应优化方法。该方法首先建立参数化稀疏表征成像模型以解决稀疏SFCS信号多普勒敏感问题,在此基础上,以在达到成像质量要求条件下使用最少观测数据量获得最优成像结果为目标对观测矩阵进行自适应优化设计,最终能够利用最少的数据量获得满意的目标成像结果。仿真实验验证了该算法的有效性。
  • ZHU Feng, ZHANG Qun, LUO Ying, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. Science China Information Science, 2012, 55(8): 1910-1924. doi: 10.1007/s11432-012-4629-0.
    徐丹蕾, 杜兰, 刘宏伟, 等. 基于复数因子分析模型的步进频数据压缩感知[J]. 电子与信息学报, 2015, 37(2): 315-321. doi: 10.11999/JEIT140407.
    XU Danlei, DU Lan, LIU Hongwei, et al. Compressive sensing using complex factor analysis for stepped-frequency data[J]. Journal of Electronics Information Technology, 2015, 37(2): 315-321. doi: 10.11999/JEIT140407.
    吕明久, 李少东, 杨军, 等. 基于随机调频步进信号的高分辨率ISAR成像方法[J]. 电子与信息学报, 2016, 38(12): 3129-3136. doi: 10.11999/JEIT160177.
    L Mingjiu, LI Shaodong, YANG Jun, et al. High resolution ISAR imaging method based on random chirp frequency- stepped signal[J]. Journal of Electronics Information Technology, 2016, 38(12): 3129-3136. doi: 10.11999/ JEIT160177.
    ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702. doi: 10.1109/TSP.2007.900760.
    YAN Wenjie, WANG Qiang, and SHEN Yi. Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(5): 1073-1048. doi: 10.1109/tim.2014.2298271.
    刘杰平, 杨朝煜, 方杰, 等. 改进的基于梯度投影的Gram观测矩阵优化算法[J]. 华中科技大学学报(自然科学版), 2016, 44(8): 62-65. doi: 10.13245/j.hust.160813.
    LIU Jieping, YANG Chaoyu, FANG Jie, et al. Improved optimization algorithm of the Gram measurement matrix based on gradient projection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(8): 62-65. doi: 10.13245/j.hust.160813.
    ABATZOGLOU T J and GHEEN G O. Range, radical velocity, and acceleration MLE using radar LFM pulse train[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 34(4): 1070-1083. doi: 10.1109/7.722676.
    毛二可, 龙腾, 韩月秋. 频率步进雷达数字信号处理[J]. 航空学报, 2001, 22(b06): 16-24. doi: 10.3321/j.issn:1000-6893. 2001.z1.003.
    MAO Erke, LONG Teng, and HAN Yueqiu. Digital signal processing of stepped frequency radar[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(b06): 16-24. doi: 10.3321/j.issn: 1000-6893.2001.z1.003.
    吕明久, 李少东, 杨军, 等. 基于全局最小熵的随机稀疏调频步进信号运动补偿方法[J]. 系统工程与电子技术, 2016, 38(8): 1744-1751. doi: 10.3969/j.issn.1001-506X.2016.08.06.
    L Mingjiu, LI Shaodong, YANG Jun, et al. Motion- compensation method based on global minimum entropy for random sparse stepped-frequency chirp signal[J]. Systems Engineering and Electronics, 2016, 38(8): 1744-1751. doi: 10.3969/j.issn.1001-506X.2016.08.06.
    王晓东. 基于步进频率的目标成像与速度精确测量方法[J]. 四川兵工学报, 2015, 36(5): 115-118. doi: 10.11809/ scbgxb2015.05.03.
    WANG Xiaodong. Target imaging and velocity measurement simultaneously algorithm based on step frequency waveforms[J]. Journal of Sichuan Ordnance, 2015, 36(5): 115-118. doi: 10.11809/scbgxb2015.05.03.
    XIA Guifen, SU Hongyan, and HUANG Peikang. Velocity compensation methods for LPRF modulated frequency stepped-frequency (MFSF) radar[J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 746-751. doi: 10.3969/j.issn.1004-4132.2010.05.005.
    CHEN Yichang, LI Gang, ZHANG Qun, et al. Motion compensation for airborne SAR via parametric sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 551-562. doi: 10.1109/TGRS. 2016.2611522.
    FAISAL Shabbir and PIOTR Omenzetter. Model updating using genetic algorithms with sequential niche technique[J]. Engineering Structures, 2016, 120: 166-182. doi: 10.1016/ j.engstruct.2016.04.028.
    DOWNEY Austin, HU Chao, and LAFLAMME Simon. Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool[J]. Structural Health Monitoring, 2017(10): 1475921717702537-1-1475921717702537-10, doi: 10.1177/ 1475921717702537.
  • 加载中
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  143
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-11-08
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回