高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PMOS晶体管工艺参数变化对SRAM单元翻转恢复效应影响的研究

张景波 杨志平 彭春雨 丁朋辉 吴秀龙

张景波, 杨志平, 彭春雨, 丁朋辉, 吴秀龙. PMOS晶体管工艺参数变化对SRAM单元翻转恢复效应影响的研究[J]. 电子与信息学报, 2017, 39(11): 2755-2762. doi: 10.11999/JEIT170547
引用本文: 张景波, 杨志平, 彭春雨, 丁朋辉, 吴秀龙. PMOS晶体管工艺参数变化对SRAM单元翻转恢复效应影响的研究[J]. 电子与信息学报, 2017, 39(11): 2755-2762. doi: 10.11999/JEIT170547
ZHANG Jingbo, YANG Zhiping, PENG Chunyu, DING Penghui, WU Xiulong. Study on the Effect of Upset and Recovery for SRAM Under the Varying Parameters of PMOS Transistor[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2755-2762. doi: 10.11999/JEIT170547
Citation: ZHANG Jingbo, YANG Zhiping, PENG Chunyu, DING Penghui, WU Xiulong. Study on the Effect of Upset and Recovery for SRAM Under the Varying Parameters of PMOS Transistor[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2755-2762. doi: 10.11999/JEIT170547

PMOS晶体管工艺参数变化对SRAM单元翻转恢复效应影响的研究

doi: 10.11999/JEIT170547
基金项目: 

国家自然科学基金(61674002, 61474001, 61574001)

Study on the Effect of Upset and Recovery for SRAM Under the Varying Parameters of PMOS Transistor

Funds: 

The National Natural Science Foundation of China (61674002, 61474001, 61574001)

  • 摘要: 基于Synopsys公司3D TCAD器件模拟,该文通过改变3种工艺参数,研究65 nm体硅CMOS工艺下PMOS晶体管工艺参数变化对静态随机存储器(Static Random Access Memory, SRAM)存储单元翻转恢复效应的影响。研究结果表明:降低PMOS晶体管的P+深阱掺杂浓度、N阱掺杂浓度或调阈掺杂浓度,有助于减小翻转恢复所需的线性能量传输值(Linear Energy Transfer, LET);通过降低PMOS晶体管的P+深阱掺杂浓度和N阱掺杂浓度,使翻转恢复时间变长。该文研究结论有助于优化SRAM存储单元抗单粒子效应(Single-Event Effect, SEE)设计,并且可以指导体硅CMOS工艺下抗辐射集成电路的研究。
  • DODD P E and MASSENGILL L W. Basic mechanisms and modeling of single-event upset in digital microelectronics[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 583-602. doi: 10.1109/TNS.2003.813129.
    KANG M, KIM J, and CHANG I J. Studying the variation effects of radiation hardened Quatro SRAM bit-cell[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2399-2401. doi: 10.1109/TNS.2016.2590426.
    KERNS S E, SHAFER B D, ROCKETT L R, et al. The design of radiation-hardened ICs for space: A compendium of approaches[J]. Proceedings of the IEEE, 1988, 76(11): 1470-1509. doi: 10.1109/5.90115.
    LIU M S, LIU H Y, BREWSTER N, et al. Limiting upset cross sections of SEU hardened SOI SRAMs[J]. IEEE Transactions on Nuclear Science, 2006, 53(6): 3487-3493. doi: 10.1109/TNS.2006.886216.
    CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874-2878. doi: 10.1109/23.556880.
    WANG H B, LI Y Q, CHEN L, et al. An SEU-tolerant DICE latch design with feedback transistors[J]. IEEE Transactions on Nuclear Science, 2015, 62(2): 548-554. doi: 10.1109/TNS. 2015.2399019.
    刘凡宇, 刘衡竹, 刘必慰, 等. 90 nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响[J]. 物理学报, 2011, 60(4): 461-468.
    LIU Fanyu, LIU Hengzhu, LIU Biwei, et al. Effect of doping concentration in p+ deep well on charge sharing in 90 nm CMOS technology[J]. Acta Physica Sinica, 2011, 60(4): 461-468.
    SAXENA P K and BHAT N. Process technique for SEU reliability improvement of deep sub-micron SRAM cell[J]. Solid-State Electronics, 2003, 47(4): 661-664. doi: 10.1016/ S0038-1101(02)00329-5.
    DASGUPTA S, WITULSKI A F, BHUVA B L, et al. Effect of well and substrate potential modulation on single event pulse shape in deep submicron CMOS[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2407-2412. doi: 10.1109/TNS. 2007.910863.
    LI Peng, ZHANG Minxuan, ZHAO Zhenyu, et al. A novel single event upset reversal in 40-nm bulk CMOS 6 T SRAM cells[J]. Nuclear Science and Techniques, 2015, 26(5): 76-82. doi: 10.13538/j.1001-8042/nst.26.050405.
    MASSENGILL L W, AMUSAN O A, DASGUPTA S, et al. Soft-error charge-sharing mechanisms at sub-100 nm technology nodes[C]. IEEE International Conference on Integrated Circuit Design and Technology, Austin, TX, USA, 2007: 1-4. doi: 10.1109/ICICDT.2007.4299576.
    HE Yibai and CHEN Shuming. Simulation study of the selectively implanted deep-N-well for PMOS SET mitigation [J]. IEEE Transactions on Device Materials Reliability, 2014, 14(1): 99-103. doi: 10.1109/TDMR.2013.2290032.
    BLACK J D, BALL II D R, ROBINSON W H, et al. Characterizing SRAM single event upset in terms of single and multiple node charge collection[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 2943-2947. doi: 10.1109/TNS. 2008.2007231.
    AMUSAN O A, MASSENGILL L W, BHUVA B L, et al. Design techniques to reduce SET pulse widths in deep- submicron combinational logic[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2060-2064. doi: 10.1109/TNS. 2007.907754.
    HSIEH C M, MURLEY P C, and O,BRIEN R R. A field-funneling effect on the collection of alpha-particle- generated carriers in silicon devices[J]. IEEE Electron Device Letters, 1981, 2(4): 103-105. doi: 10.1109/EDL.1981.25357.
    AMUSAN O A, WITULSKI A F, MASSENGILL L W, et al. Charge collection and charge sharing in a 130 nm CMOS technology[J]. IEEE Transactions on Nuclear Science, 2006, 53(6): 3253-3258. doi: 10.1109/TNS.2006.884788.
    CHEN Meng, LEI Jiefeng, HUANG Shengxiang, et al. Poly-Si TFTs integrated gate driver circuit with charge- sharing structure[J]. Journal of Semiconductors, 2017, 38(5): 92-97. doi: 10.1088/1674-4926/38/5/055001.
    HE Liang, CHEN Hua, SUN Peng, et al. Single event upset rate modeling for ultra-deep submicron complementary metal-oxide-semiconductor devices[J]. Science China Information Sciences, 2016, 59(4): 1-11. doi: 10.1007/s11432- 015-5362-2.
    CHUMAKOV A I. Modified charge collection model by point node for SEE sensitivity estimation[C]. 2015 IEEE 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Moscow, Russia, 2015: 1-5. doi: 10.1109/RADECS.2015.7365635.
    YAN S, ZHANG W, LI G, et al. 3-D simulation of charge collection in double-gate MOSFET under low-energy proton irradiation[C]. IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 2016: 1-2. doi: 10.1109/ INEC.2016.7589258.
    FURUTA J, YAMAMOTO R, KOBAYASHI K, et al. Evaluation of parasitic bipolar effects on neutron-induced SET rates for logic gates[C]. IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 2012: SE. 5.1-SE.5.5. doi: 10.1109/IRPS.2012.6241930.
    DING Yi, HU Jianguo, QIN Junrui, et al. Effect of body biasing on single-event induced charge collection in deep N-well technology[J]. Chinese Physics B, 2015, 24(7): 079401. doi: 10.1088/1674-1056/24/7/079401.
  • 加载中
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  254
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回