高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逆向传输机制的反馈型两级交换结构

申志军 高静 乌日更

申志军, 高静, 乌日更. 基于逆向传输机制的反馈型两级交换结构[J]. 电子与信息学报, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531
引用本文: 申志军, 高静, 乌日更. 基于逆向传输机制的反馈型两级交换结构[J]. 电子与信息学报, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531
SHEN Zhijun, GAO Jing, WU Rigeng. Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture[J]. Journal of Electronics & Information Technology, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531
Citation: SHEN Zhijun, GAO Jing, WU Rigeng. Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture[J]. Journal of Electronics & Information Technology, 2018, 40(3): 697-704. doi: 10.11999/JEIT170531

基于逆向传输机制的反馈型两级交换结构

doi: 10.11999/JEIT170531
基金项目: 

内蒙古农业大学优秀青年科学基金(2014XYQ-17),国家自然科学基金(61650204, 61462070),内蒙古农业大学博士科研启动基金(BJ2013B-1)

Feedback and Reverse Transmission Mechanism Based Two-stage Switch Architecture

Funds: 

The Excellent Young Scientist Foundation of Inner Mongolia Agricultural University of China (2014XYQ-17), The National Natural Science Foundation of China (61650204, 61462070), The Doctoral Scientific Research Foundation of Inner Mongolia Agricultural University of China (BJ2013B-1)

  • 摘要: 为解决FTSA-2-SS结构中的信元冲突、信元失序以及交换流程复杂化等问题,该文提出一种基于逆向传输机制的反馈型两级交换结构(FRTM-TSA)。该结构通过crossbar逆向传输机制使得任意输入端口均可获得其相邻端口的调度结果并以此对目标端口所反馈的缓存信息进行修正,基于修正后的信息进行算法调度使得FRTM-TSA能够避免信元冲突和信元失序,也无需在输出端口设置重排序缓存。理论分析和仿真结果均表明FRTM-TSA能够以相对简洁的交换结构和交换流程获得更优的时延性能。
  • XIAO Jie, YEUNG K L, and JAMIN S. Pipelined scheduler for unicast and multicast traffic in input-queued switches[C]. IEEE Global Communications Conference, Washington, D.C., USA, 2016: 1-6. doi: 10.1109/GLOCOM.2016.7842148.
    HU Bing, YEUNG K L, ZHOU Qian, et al. On iterative scheduling for input-queued switches with a speedup of 2-1/N[J]. IEEE/ACM Transactions on Networking, 2016, 24(6): 3565-3577. doi: 10.1109/TNET.2016.2541161.
    CERUTTI I, CORVERA J A, DUMLAO S M, et al. Simulation and FPGA-based implementation of iterative parallel schedulers for optical interconnection networks[J]. IEEE/OSA Journal of Optical Communications and Networking, 2017, 9(4): C76-C87. doi: 10.1364/JOCN.9. 000C76.
    CHANG C S, LEE D S, and JOU Y S. Load balanced Birkhoff-von Neumann switches[C]. IEEE Workshop on High Performance Switching and Routing, Dallas, TX, USA, 2001: 276-280. doi: 10.1109/HPSR.2001.923646.
    YE T, ZHANG J, LEE T T, et al. Deflection-compensated Birkhoff-von-Neumann switches[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 879-895. doi: 10.1109/TNET. 2016.2606766.
    DURKOVIC S and CICA Z. Birkhoff-von-Neumann switch with deflection based load balancing[C]. Telecommunications Forum, Belgrade, Republic of Serbia, 2016: 1-4. doi: 10.1109 /TELFOR.2016.7818731.
    KESLASSY I and MCKEOWN N. Maintaining packet order in two-stage switches[C]. IEEE International Conference on Computer Communications, New York, USA, 2002, 2: 1032-104. doi: 10.1109/INFCOM.2002.1019351.
    KESLASSY I, CHUANG S, YU K, et al. Scaling Internet routers using optics[C]. Proceedings of ACM SIGCOMM, Karlsruhe, Germany, 2003: 189-200. doi: 10.1145/863955. 863978.
    CHANG C S, LEE D S, SHIH Y J, et al. Mailbox switch: A scalable two-stage switch architecture for conflict resolution of ordered packets[J]. IEEE Transactions on Communications, 2008, 56(1): 136-149. doi: 10.1109/ TCOMM.2008.050427.
    YU C L, CHANG C S, and LEE D S. CR switch: A load- balanced switch with contention and reservation[J]. IEEE/ACM Transactions on Networking, 2009, 17(5): 1659-1671. doi: 10.1109/TNET.2008.2010624.
    SHEN Y , PANWAR S S, and CHAO H J. Design and performance analysis of a practical load-balanced switch[J]. IEEE Transactions on Communications, 2009, 57(8): 2420-2429. doi: 10.1109/TCOMM.2009.08.070477.
    HU Bing and YEUNG K L. Feedback-based scheduling for load-balanced two-stage switches[J]. IEEE/ACM Transactions on Networking, 2010, 18(4): 1077-1090. doi: 10.1109/TNET.2009.2037318.
    CAI Yan, WANG Xiaolin, GONG Weibo, et al. A study on the performance of a three-stage load-balancing switch[J]. IEEE/ACM Transactions on Networking, 2014, 22(1): 52-65. doi: 10.1109/TNET.2013.2244906.
    HE Chunzhi, HU Bing, and YEUNG K L. FTMS: An efficient multicast scheduling algorithm for feedback-based two-stage switch[C]. Global Communications Conference, Anaheim, California, USA, 2012: 2541-2546. doi: 10.1109/GLOCOM. 2012.6503499.
    DURKOVIC S and CICA Z. Birkhoff-von Neumann switch based on greedy scheduling[J]. IEEE Computer Architecture Letters, 2017, (99): 1-1. doi: 10.1109/LCA.2017.2707082.
    HUANG An and HU Bing. The optimal joint sequence design in the feedback-based two-stage switch[J]. Journal of Network Computer Applications, 2014, 45: 27-34. doi: 10.1016/ j.jnca.2014.06.011.
    LIN Y S and SHUNG C B. Quasi-pushout cell discarding[J]. IEEE Communication Letters, 1997, 1(5): 146-148. doi: 10.1109/4234.625041.
    申志军, 曾华燊, 高志江. 一种改进的反馈制两级交换结构FTSA-2-SS[J]. 电子与信息学报, 2011, 33(6): 1319-1325. doi: 10.3724/SP.J.1146.2010.01207.
    SHEN Zhijun, ZENG Huasheng, and GAO Zhijiang. An improved feedback-based two-stage switch architecture using 2-staggered symmetry connection pattern[J]. Journal of Electronics Information Technology, 2011, 33(6): 1319-1325. doi: 10.3724/SP.J.1146.2010.01207.
  • 加载中
计量
  • 文章访问数:  1956
  • HTML全文浏览量:  113
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-20
  • 修回日期:  2017-10-27
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回