高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏时频分布的跳频信号参数估计

金艳 周磊 姬红兵

金艳, 周磊, 姬红兵. 基于稀疏时频分布的跳频信号参数估计[J]. 电子与信息学报, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525
引用本文: 金艳, 周磊, 姬红兵. 基于稀疏时频分布的跳频信号参数估计[J]. 电子与信息学报, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525
JIN Yan, ZHOU Lei, JI Hongbing. Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525
Citation: JIN Yan, ZHOU Lei, JI Hongbing. Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution[J]. Journal of Electronics & Information Technology, 2018, 40(3): 663-669. doi: 10.11999/JEIT170525

基于稀疏时频分布的跳频信号参数估计

doi: 10.11999/JEIT170525
基金项目: 

国家自然科学基金(61201286),陕西省自然科学基金(2014JM8304)

Parameter Estimation of Frequency-hopping Signals Based on Sparse Time-frequency Distribution

Funds: 

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province (2014JM8304)

  • 摘要: 基于常规时频分析方法的跳频信号参数估计中,采用核函数抑制时频分布交叉项会导致时频聚集性的下降,不利于信号参数提取。针对此问题,该文提出一种基于稀疏时频分布(STFD)的跳频信号处理方法。该方法首先根据Cohen类分布的原理和跳频信号模糊函数的特点,以模糊域矩形窗为核函数,构建了一种Cohen类的矩形核分布(RKD)。RKD可有效抑制交叉项,但其时频分辨率较低。为提高RKD的时频性能,在压缩感知框架下,利用跳频信号时频分布的稀疏特性,对RKD附加稀疏性约束,建立稀疏时频分布(STFD)的优化求解模型。STFD不仅能有效抑制交叉项,而且具有良好的时频聚集性。仿真分析表明,与传统时频分析方法相比,该文提出的基于STFD的跳频信号参数估计方法性能更优。
  • LEE J and YOON D. Improved FH acquisition scheme in partial-band noise jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 3070-3076. doi: 10.1109/TAES.2016.160071.
    TORRIERI D J. Mobile frequency-hopping CDMA systems[J]. IEEE Transactions on Communications, 2000, 48(8): 1318-1327. doi: 10.1109/26.864169.
    LIU F, MARCELLIN M W, GOODMAN N A, et al. Compressive sampling for detection of frequency-hopping spread spectrum signals[J]. IEEE Transactions on Signal Processing, 2016, 64(21): 5513-5524. doi: 10.1109/TSP.2016. 2597122.
    陈莹, 钟菲, 郭树旭. 非合作跳频信号参数的盲压缩感知估计[J]. 雷达学报, 2016, 5(5): 531-537. doi: 10.12000/JR15106.
    CHEN Ying, ZHONG Fei, and GUO Shuxu. Blind compressed sensing parameter estimation of non-cooperative frequency hopping signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106.
    钱怡, 马庆力, 路后兵. 基于改进SPWVD的DS/FH信号跳频参数估计方法[J]. 舰船电子对抗, 2015, 38(1): 50-53. doi: 10.16426/j.cnki.jcdzdk.2015.01.012.
    QIAN Yi, MA Qingli, and LU Houbing. Estimation method of frequency hopping parameter of DS/FH signal based on improved SPWVD[J]. Shipboard Electronic Countermeasure, 2015, 38(1): 50-53. doi: 10.16426/j.cnki.jcdzdk.2015.01.012.
    雷迎科, 钟子发, 吴彦华. 基于RSPWVD高速跳频信号跳周期估计算法[J]. 系统工程与电子技术, 2008, 30(5): 803-805. doi: 10.3321/j.issn:1001-506X.2008.05.006.
    LEI Yingke, ZHONG Zifa, and WU Yanhua. Hop duration estimation algorithm for high-speed frequency-hopping signals based on RSPWVD[J]. Systems Engineering and Electronics, 2008, 30(5): 803-805. doi: 10.3321/j.issn:1001- 506X.2008.05.006.
    金艳, 彭营, 姬红兵. 稳定分布噪声中基于最优核时频分析的跳频信号参数估计[J]. 系统工程与电子技术, 2015, 37(5): 985-991. doi: 10.3969/j.issn.1001-506X.2015.05.01.
    JIN Yan, PENG Ying, and JI Hongbing. Parameter estimation of FH signals based on optimal kernel time- frequency analysis in stable distribution noise[J]. Systems Engineering and Electronics, 2015, 37(5): 985-991. doi: 10.3969/j.issn.1001-506X.2015.05.01.
    沙志超, 黄知涛, 周一宇, 等. 基于时频稀疏性的跳频信号时频图修正方法[J]. 宇航学报, 2013, 34(6): 848-853. doi: 10.3873/j.issn.1000-1328.2013.06.015.
    SHA Zhichao, HUANG Zhitao, ZHOU Yiyu, et al. A modification method for time-frequency pattern of frequency- hopping signals based on timefrequency sparsity[J]. Joumal of Astmnautics, 2013, 34(6): 848-853. doi: 10.3873/j.issn. 1000-1328.2013.06.015.
    王磊, 姬红兵, 史亚. 基于模糊函数特征优化的雷达辐射源个体识别[J]. 红外与毫米波学报, 2011, 30(1): 74-79.
    WANG Lei, JI Hongbing, and SHI Ya. Feature optimization of ambiguity function for radar emitter recognition[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 74-79.
    COHEN L. Time-frequency distributions-a review[J]. Proceedings of the IEEE, 1989, 77(7): 941-981. doi: 10.1109/ 5.30749.
    BOASHASH B. Time-frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Salt Lake City, UT, USA, American Academic Press, 2015: 151-157.
    OBERLIN T, MEIGNEN S, and PERRIER V. Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1335-1344. doi: 10.1109/TSP.2015.2391077.
    石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081.
    SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of Compressed Sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
    CANDES E J and TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507.
    ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation: algorithms and applications[J]. IEEE Access, 2015, 3: 490-530. doi: 10.1109/ACCESS.2015.2430359.
    TONG C, LI J, and ZHANG W. Improved RIC bound for the recovery of sparse signals by orthogonal matching pursuit with noise[J]. Electronics Letters, 2016, 52(23): 1956-1958. doi: 10.1049/el.2016.1523.
    ZENG J, LIN S, and XU Z. Sparse regularization: convergence of iterative jumping thresholding algorithm[J]. IEEE Transactions on Signal Processing, 2016, 64(19): 5106-5118. doi: 10.1109/TSP.2016.2595499.
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. doi: 10.1109/JSTSP.2007.910281.
  • 加载中
计量
  • 文章访问数:  1374
  • HTML全文浏览量:  155
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-11-06
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回