高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像微观结构的二值化表示与目标识别应用

张东波 陈治强 易良玲 许海霞

张东波, 陈治强, 易良玲, 许海霞. 图像微观结构的二值化表示与目标识别应用[J]. 电子与信息学报, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513
引用本文: 张东波, 陈治强, 易良玲, 许海霞. 图像微观结构的二值化表示与目标识别应用[J]. 电子与信息学报, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513
ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, XU Haixia. Binarization Representation of Image Microstructure and the Application of Object Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513
Citation: ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, XU Haixia. Binarization Representation of Image Microstructure and the Application of Object Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(3): 633-640. doi: 10.11999/JEIT170513

图像微观结构的二值化表示与目标识别应用

doi: 10.11999/JEIT170513
基金项目: 

国家自然科学基金(61602397),湖南省自然科学基金(2017JJ2251, 2017JJ3315),湖南省重点学科建设项目

Binarization Representation of Image Microstructure and the Application of Object Recognition

Funds: 

The National Natural Science Foundation of China (61602397), The Natural Science Foundation of Hunan Province (2017JJ2251, 2017JJ3315), The Key Discipline Construction Project of Hunan Province

  • 摘要: 该文提出一种新颖的基于二值图像微观结构模式(Binary Image Micorsructure Pattern, BIMP)表达和灰度图像微观结构二值模式(Gray Image Micorsruct Maximum Response Pattern, GIMMRP)编码方法。通过对图像33邻域结构进行二值编码,获得图像微观结构的描述,进而选取其中的重要执行模式子集和池化操作,实现整体图像的表示。为了检验算法的有效性,在ORL, YALE两个人脸公开数据集,MNIST, USPS两个手写数字公开数据集,以及非公开车标数据集上进行了测试,显示该方法具有很强的鉴别能力和鲁棒性,可以达到和超过很多最新算法的性能。
  • BAY H and TUYTELAARS T. SURF: Speeded up robust features[J]. Computer Vision Image Understanding, 2006, 110(3): 404-417. doi: 10.1007/11744023_32.
    LOWE D G. Distinctive image features from scale- invariantkeypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664. 99615.94.
    MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2005, 27(10): 1615-1630. doi: 10.1109/TPAMI.2005.188.
    ENGIN Tola, LEPETIT Vincent, and FUA Pascal. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2010, 32(5): 815-830. doi: 10.1109/TPAMI.2009. 77.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision Pattern Recognition, San Francisco, USA, 2005: 886-893. doi: 10.1109/CVPR.2005.177.
    OJALA T, VALKEALAHTI K, OJA E, et al. Texture discrimination with multidimensional distributions of signed gray-level differences[J]. Pattern Recognition, 2001, 34(3): 727-739. doi: 10.1016/S0031-3203(00)00010-8.
    OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI. 2002.1017623.
    GUO Z H, ZHANG L, and ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663. doi: 10.1109/TIP.2010.2044957.
    LIAO S, LAW M W K and CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE Transactionson Image Processing, 2009, 18(5): 1107-1118. doi: 10.1109/TIP.2009.2015682.
    MAENPAA T, OJALA T, and PIETIKAINEN M. Robust texture classification by subsets of local binary patterns[C]. Proceedings of the 2000 International Conference on Pattern Recognition, Barcelona, Brazil, 2000: 947-950. doi: 10.1109/ ICPR.2000.903698.
    HAMDAN B and MOKHTAR K. Face recognition using Angular Radial Transform[J]. Journal of King Saud University-Computer and Information Sciences, 2016. doi: 10.1016/j.jksuci.2016.10.006.
    ZHU N B, TANG T, and TANG S. A sparse representation method based on kernel and virtual samples for face recognition[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 6236-6241. doi: 10.1016/j.ijleo. 2013.05.017.
    ZHANG Y Y and ZHAO D. Adaptive convolutional neural network and its application in face recognition[J]. Neural Processing Letters, 2016, 43(2): 389-399. doi: 10.1007/ s11063-015-9420-y.
    HUANG P and LAI Z H. Adaptive linear discriminant regression classification for face recognition[J]. Digital Signal Processing, 2016, 55: 78-84. doi: 10.1016/j.dsp.2016.05.001.
    WANG S J and ZHOU C G. Face recognition using second- order discriminant tensor subspace analysis[J]. Neurocomputing, 2011, 74(12-13): 2142-2156. doi: 10.1016/ j.neucom.2011.01.024.
    WANG G Q and SHI N F. Embedded manifold-based kernel fisher discriminant analysis for face recognition[J]. Neural Processing Letters, 2016, 43(1): 1-16. doi: 10.1007/s11063- 014-9398-x.
    SINGH G and CHHABRA I. Integrating global zernike and local discriminative HOG features for face recognition[J]. International Journal of Image Graphics, 2016, 16(4): 1650021-1650042. doi: 10.1142/S0219467816500212.
    SHAO H and CHEN S. Face recognition based on subset selection via metric learning on manifold[J]. Frontiers of Information Technology Electronic Engineering, 2015, 16(12): 1046-1058. doi: 10.1631/FITEE.1500085.
    DING S F and GUO L L. Extreme learning machine with kernel model based on deep learning[J]. Neural Computing Applications, 2017, 28(8): 1975-1984. doi: 10.1007/s00521- 015-2170-y.
    ZHOU Y and SUN S L. Manifold partition discriminant analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 830-840. doi: 10.1109/TCYB.2016.2529299.
    WU T F and LIN C J. Probability estimates for multi-class classification by pairwise coupling[J]. Journal of Machine Learning Research, 2004, 5(4): 975-1005.
    SCHMIDHUBER J, CIRES D, and MEIER U. Multi-column deep neural networks for image classification[C]. IEEE Conference on Computer Vision Pattern Recognition, Rod Aprovendis, USA, 2012: 3642-3649. doi: 10.1109/CVPR.2012. 6248110.
    ZHANG Z M and LADICKY L. Learning anchor planes for Classification[C]. Advances in Neural Information Processing Systems, Granada, Spain, December, 2011: 1611-1619.
    EBRAHIMZADEH R and JAMPOUR M. Efficient handwritten digit recognition based on histogram of oriented gradients and SVM[J]. Annals of the Rheumatic Diseases, 2014, 104(9):10-13. doi: 10.5120/18229-9167.
  • 加载中
计量
  • 文章访问数:  1275
  • HTML全文浏览量:  172
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-10-19
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回