高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SFLA-GA混合算法求解时间最优的旅行商问题

张勇 高鑫鑫 王昱洁

张勇, 高鑫鑫, 王昱洁. 基于SFLA-GA混合算法求解时间最优的旅行商问题[J]. 电子与信息学报, 2018, 40(2): 363-370. doi: 10.11999/JEIT170484
引用本文: 张勇, 高鑫鑫, 王昱洁. 基于SFLA-GA混合算法求解时间最优的旅行商问题[J]. 电子与信息学报, 2018, 40(2): 363-370. doi: 10.11999/JEIT170484
ZHANG Yong, GAO Xinxin, WANG Yujie. Solving the Time Optimal Traveling Salesman Problem Based on Hybrid Shuffled Frog Leaping Algorithm-Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(2): 363-370. doi: 10.11999/JEIT170484
Citation: ZHANG Yong, GAO Xinxin, WANG Yujie. Solving the Time Optimal Traveling Salesman Problem Based on Hybrid Shuffled Frog Leaping Algorithm-Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(2): 363-370. doi: 10.11999/JEIT170484

基于SFLA-GA混合算法求解时间最优的旅行商问题

doi: 10.11999/JEIT170484
基金项目: 

国家科技支撑计划项目(2013BAH52F01)

Solving the Time Optimal Traveling Salesman Problem Based on Hybrid Shuffled Frog Leaping Algorithm-Genetic Algorithm

Funds: 

The National Science and Technology Support Program of China (2013BAH52F01)

  • 摘要: 该文以经典的对称旅行商问题(Symmetric Traveling Salesman Problem, STSP)为基础,求解时间最优的旅行商问题(Time Optimal TSP, TOTSP),将拟合函数引入到混合蛙跳遗传算法(SFLA-GA)的适应度函数来反映景点客流量随时间的变化,旨在旅游旺季为游客提供一条游览时间最短的路径推送服务。实验结果表明:相对于随机游览路径,SFLA-GA混合算法得到的游览路径明显节省了游览时间;与SFLA和混合粒子群遗传算法(PSO-GA)相比较,SFLA-GA混合算法具有计算量少、收敛速度快、对初始种群依赖性低以及全局性更好等优点,在求解TOTSP上搜索性能更强、时间更优。
  • IACOPO G, FRANCOIS M, and KENJI S. The traveling salesman problem with neighborhoods: MINLP solution[J]. Optimization Methods and Software, 2013, 28(2): 364-378. doi: 10.1080/10556788.2011.648932.
    ALFONSAS M, ANDRIUS B, and ANTANAS L. Modified local search heuristics for the symmetric traveling salesman problem[J]. Information Technology and Control, 2013, 42(3): 217-230. doi: 10.5755/j01.itc.42.3.1301.
    张勇, 陈玲, 徐小龙, 等. 基于PSO-GA混合算法时间优化的旅行商问题研究[J]. 计算机应用研究, 2015, 32(12): 3613-3617. doi: 10.3969/j.issn.1001-3695.2015.12.019.
    ZHANG Yong, CHEN Ling, XU Xiaolong, et al. Research on time optimal TSP based on hybrid PS0-GA[J]. Application Research of Computers, 2015, 32(12): 3613-3617. doi: 10.3969 /j.issn.1001-3695.2015.12.019.
    ZHAN Shihua, LIN Juan, ZHANG Zejun, et al. List-based simulated annealing algorithm for traveling salesman problem[J]. Computational Intelligence and Neuroscience, 2016, (5): 1-12. doi: 10.1155/2016/1712630.
    PAN G, LI K, OUYANG A, et al. Hybrid immune algorithm based on greedy algorithm and delete-cross operator for solving TSP[J]. Soft Computing, 2016, 20(2): 1-12. doi: 10.1007/s00500-014-1522-3.
    YANG Jianyi, DING Ruifeng, ZHANG Yuan, et al. An improved ant colony optimization(I-ACO) method for the quasi travelling salesman problem(Quasi-TSP)[J]. International Journal of Geographical Information Science, 2015, 29(9): 1534-1551. doi: 10.1080/13658816.2015.1013960.
    王勇臻, 陈燕, 于莹莹. 求解多旅行商问题的改进分组遗传算法[J]. 电子与信息学报, 2017, 39(1): 198-205. doi: 10.11999/ JEIT160211.
    WANG Yongzhen, CHEN Yan, and YU Yingying. Improved grouping genetic algorithm for solving multiple traveling salesman problem[J]. Jounal of Electronics Information Technology, 2017, 39(1): 198-205. doi: 10.11999/JEIT160211.
    胡颖, 庄雷, 兰巨龙, 等. 基于自适应协同进化粒子群算法的虚拟网节能映射研究[J]. 电子与信息学报, 2016, 38(10): 2660-2666. doi: 10.11999/JEIT151434.
    HU Ying, ZHUANG Lei, LAN Julong, et al. Energy aware virtual network embedding using particle swarm optimization algorithm based on adaptive[J]. Journal of Electronics Information Technology, 2016, 38(10): 2660-2666. doi: 10.11999/JEIT151434.
    程希, 沈建华. 一种基于改进蚁群算法的光网络波长路由分配算法[J]. 电子与信息学报, 2012, 34(3): 710-715. doi: 10.3724/SP.J.1146.2011.01032.
    CHENG Xi and SHEN Jianhua. An improved ant colony algorithm for routing and wavelength assignment in optical networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 710-715. doi: 10.3724/SP.J.1146.2011.01032.
    HASANIEN H M. Shuffled frog leaping algorithm-based static synchronous compensator for transient stability improvement of a grid-connected wind farm[J]. Iet Renewable Power Generation, 2014, 8(6): 722-730. doi: 10.1049/iet-rpg. 2013.0277.
    骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429-434. doi: 10.3724/ SP.J.1146.2010.00328.
    LUO Jianping, LI Xia, and CHEN Minrong. Improved shuffled frog leaping algorithm for solving CVRP[J]. Journal of Electronics Information Technology, 2011, 33(2): 429-434. doi: 10.3724/SP.J.1146.2010.00328.
    马乐, 叶见新, 王晖. 旅游景区智能客流统计系统应用研究以玄武湖为例[J]. 中国科技信息, 2013, (2): 88-89. doi: 10.3969/j.issn.1001-8972.2013.02.040.
    MA Le, YE Jianxin, and WANG Hui. Application research of intelligent statistical system for scenic area passenger flow- take xuanwu lake as an example[J]. China Science and Technology Information, 2013, (2): 88-89. doi: 10.3969/j.issn. 1001-8972.2013.02.040.
    文俊浩, 舒珊. 一种改进相似性度量的协同过滤推荐算法[J]. 计算机科学, 2014, 41(5): 68-71. doi: 10.3969/j.issn.1002- 137X.2014.05.015.
    WEN Junhao and SHU Shan. Improved collaborative filtering recommendation algorithm of similarity measure[J]. Computer Science, 2014, 41(5): 68-71. doi: 10.3969/j.issn. 1002-137X.2014.05.015.
    HWANG Chaoming and YANG Miinshen. New similarity measures between generalized trapezoidal fuzzy numbers using the jaccard index[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2014, 22(6): 831-844. doi: 10.1142/S0218488514500445.
    孙冲. 混合蛙跳算法改进及控制参数优化仿真研究[D]. [硕士论文], 哈尔滨工业大学, 2011.
    SUN Chong. Shuffled frog leaping algorithm improvement and simulation research for optimization of control parameters[D]. [Master dissertation], Harbin Institute of Technology, 2011.
    麻荣永, 杨磊磊, 张智超. 基于粒子迭代位移和轨迹的粒子群算法C1、C2 参数特性分析[J]. 数学计算, 2013, 2(4): 109-115.
    MA Rongyong, YANG Leilei, and ZHANG Zhichao. Analysis the characteristic of C1, C2 based on the PSO of iterative shift and trajectory of particle[J]. Mathematical Computation, 2013, 2(4): 109-115.
  • 加载中
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  152
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18
  • 修回日期:  2017-11-08
  • 刊出日期:  2018-02-19

目录

    /

    返回文章
    返回