高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部感知下的稀疏优化目标跟踪方法

刘大千 刘万军 费博雯

刘大千, 刘万军, 费博雯. 局部感知下的稀疏优化目标跟踪方法[J]. 电子与信息学报, 2018, 40(2): 272-281. doi: 10.11999/JEIT170473
引用本文: 刘大千, 刘万军, 费博雯. 局部感知下的稀疏优化目标跟踪方法[J]. 电子与信息学报, 2018, 40(2): 272-281. doi: 10.11999/JEIT170473
LIU Daqian, LIU Wanjun, FEI Bowen. Object Tracking Method Based on Sparse Optimization of Local Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(2): 272-281. doi: 10.11999/JEIT170473
Citation: LIU Daqian, LIU Wanjun, FEI Bowen. Object Tracking Method Based on Sparse Optimization of Local Sensing[J]. Journal of Electronics & Information Technology, 2018, 40(2): 272-281. doi: 10.11999/JEIT170473

局部感知下的稀疏优化目标跟踪方法

doi: 10.11999/JEIT170473
基金项目: 

国家自然科学基金(61172144),辽宁省科技攻关计划项目(2012216026)

Object Tracking Method Based on Sparse Optimization of Local Sensing

Funds: 

The National Natural Science Foundation of China (61172144), The Science and Technology Foundation of Liaoning Province (2012216026)

  • 摘要: 针对传统稀疏表示跟踪算法在复杂背景中易出现跟踪漂移问题,该文提出一种局部感知下的稀疏优化目标跟踪方法。首先,将首帧确定的目标区域进行非重叠均匀分割,并利用目标的全局特征和局部特征联合建模。然后,提出一种局部感知校验方法约束稀疏优化匹配过程,从而确定最优匹配样本。最后,在模板更新中提出一种决策方法对遮挡进行检测,并针对不同遮挡情况采取相应的更新策略,使得更新后的模板集更加完善。实验在10个标准库视频序列中测试,并与目前较流行的目标跟踪算法在跟踪效果、成功率等方面进行比较,实验结果表明,提出的跟踪方法在局部遮挡、目标形变、复杂背景等条件下跟踪准确、适应性强。
  • QI Yuanchen WU Chengdong CHEN Dongyue, et al. Superpixel tracking based on sparse representation[J]. Journal of Electronics Information Technology, 2015, 37(3): 529-535. doi: 10.11999/JEIT140374.
    齐苑辰, 吴成东, 陈东岳, 等. 基于稀疏表达的超像素跟踪算法[J]. 电子与信息学报, 2015, 37(3): 529-535. doi: 10.11999/ JEIT140374.
    李文娟,顾 红,苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114-3121.doi: 10.11999/JEIT160372.
    LI Wenjuan, GU Hong, and SU Weimin. Extended target tracking method based on multi-bernoulli probability hypothesis density[J]. Journal of Electronics Information Technology, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT 160372.
    杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017 39(3): 634-639. doi: 10.11999 /JEIT160467.
    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467.
    MEI Xue and LING Haibin. Robust visual tracking using L1 minimization[C]. IEEE 12th International Conference on Computer Vision, Florence, Italy, 2009: 1436-1443. doi: 10.1109/ICCV.2009.5459292.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1830-1837. doi: 10.1109/CVPR.2012.6247881.
    ZHANG Tianzhu, Ghanem B, LIU Si, et al. Robust visual tracking via multi-task sparse learning[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 2042-2049. doi: 10. 1109/CVPR.2012.6247908.
    张旭东, 陈仲海, 胡良梅, 等. 基于联合模板稀疏表示的目标跟踪方法[J]. 控制与决策, 2015, 30(9): 1696-1700. doi: 10.13195/j.kzyjc.2014.1175.
    ZHANG Xudong, CHEN Zhonghai, HU Liangmei, et al. Object tracking method based on sparse representation of joint template[J]. Control and Decision, 2015, 30(9): 1696-1700. doi: 10.13195/j.kzyjc.2014.1175.
    ZHANG Shengping, ZHOU Huiyu, JIANG Feng, et al. Robust visual tracking using structurally random projection and weighted least squares[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(11): 1749-1760. doi: 10.1109/TCSVT.2015.2406194.
    胡秀华, 郭雷, 李晖晖, 等. 一种结合空间信息和稀疏字典优化的目标跟踪算法[J]. 控制与决策, 2016, 31(12): 2170-2176. doi: 10.13195/j.kzyjc.2015.1489.
    HU Xiuhua, GUO Lei, LI Huihui, et al. An object tracking algorithm combining spatial information and sparse dictionary optimization[J]. Control and Decision, 2016, 31(12): 2170-2176. doi: 10.13195/j.kzyjc.2015.1489.
    MEI X, LING Haibin, WU Yi, et al. Efficient minimum error bounded particle resampling L1 tracker with occlusion detection[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2661-2675. doi: 10.1109/TIP.2013.2255301.
    WU Yi, LIM Jongwoo, and YANG Minghsuan. Online object tracking: A benchmark[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2411-2418. doi: 10.1109/ CVPR.2013.312.
    KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239.
    ORON S, HILLEL A, and LEVI D. Locally orderless tracking [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1940-1947. doi: 10.1109/CVPR.2012.6247895.
    KWON J and LEE K M. Visual tracking decomposition [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 1269-1276. doi: 10.1109/CVPR.2010.5539821.
    ZHONG Wei, LU Huchuan, and YANG Minghsuan. Robust object tracking via sparsity-based collaborative model[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012: 1838-1845. doi: 10.1109/CVPR.2012.6247882.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, NY, USA, 2006: 798-805. doi: 10.1109/CVPR.2006.256.
  • 加载中
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  127
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-08-01
  • 刊出日期:  2018-02-19

目录

    /

    返回文章
    返回