高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纹元森林和显著性先验的弱监督图像语义分割方法

韩铮 肖志涛

韩铮, 肖志涛. 基于纹元森林和显著性先验的弱监督图像语义分割方法[J]. 电子与信息学报, 2018, 40(3): 610-617. doi: 10.11999/JEIT170472
引用本文: 韩铮, 肖志涛. 基于纹元森林和显著性先验的弱监督图像语义分割方法[J]. 电子与信息学报, 2018, 40(3): 610-617. doi: 10.11999/JEIT170472
HAN Zheng, XIAO Zhitao. Weakly Supervised Semantic Segmentation Based on Semantic Texton Forest and Saliency Prior[J]. Journal of Electronics & Information Technology, 2018, 40(3): 610-617. doi: 10.11999/JEIT170472
Citation: HAN Zheng, XIAO Zhitao. Weakly Supervised Semantic Segmentation Based on Semantic Texton Forest and Saliency Prior[J]. Journal of Electronics & Information Technology, 2018, 40(3): 610-617. doi: 10.11999/JEIT170472

基于纹元森林和显著性先验的弱监督图像语义分割方法

doi: 10.11999/JEIT170472
基金项目: 

高等学校博士学科点专项科研基金(SRFDP 20131201110001),中国纺织工业协会应用基础研究项目(J201509),内蒙古自治区高等学校科学技术研究项目(NJZY237)

Weakly Supervised Semantic Segmentation Based on Semantic Texton Forest and Saliency Prior

Funds: 

The Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP20131201110001), The Applied Basic Research Programs of China National Textile and Apparel Council (J201509), The Scientific Studies Program of Higher Education of Inner Mongolia Municipality (NJZY237)

  • 摘要: 弱监督语义分割任务常利用训练集中全体图像的超像素及其相似度建立图模型,使用图像级别标记的监督关系进行约束求解。全局建模缺少单幅图像结构信息,同时此类参数方法受到复杂度限制,无法使用大规模的弱监督训练数据。针对以上问题,该文提出一种基于纹元森林和显著性先验的弱监督图像语义分割方法。算法使用弱监督数据和图像显著性训练随机森林分类器用于语义纹元森林特征(Semantic Texton Forest, STF)的提取。测试时,先将图像进行过分割,然后提取超像素语义纹元特征,利用朴素贝叶斯法进行超像素标记的概率估计,最后在条件随机场(CRF)框架下结合图像显著性信息定义了新的能量函数表达式,将图像的标注(labeling)问题转换为能量最小化问题求解。在MSRC-21类数据库上进行了验证,完成了语义分割任务。结果表明,在并未对整个训练集建立图模型的情况下,仅利用单幅图像的显著性信息也可以得到较好的分割结果,同时非参模型有利于规模数据分析。
  • KOHLI Pushmeet, LADICKY L, and TORR P H S. Robust higher order potentials for enforcing label consistency[J]. International Journal of Computer Vision, 2009, 82(3): 302-324. doi: 10.1007/s11263-008-0202-0.
    ZHANG L, SONG M, LIU Z, et al. Probabilistic graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 1908-1915. doi: 10.1109/CVPR.2013.249.
    ZHANG Ke, ZHANG Wei, ZHENG Yingbin, et al. Sparse reconstruction for weakly supervised semantic segmentation [C]. International Joint Conference on Artificial Intelligence, Beijing, China, 2013: 1889-1895.
    VEZHNEVETS A, FERRARIV, and BUHMANN J M. Weakly supervised structured output learning for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 845-852. doi: 10.1109/CVPR.2012.6247757.
    VEZHNEVETS A and BUHMANN J M. Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 3249-3256. doi: 10.1109/CVPR.2010. 5540060.
    SHOTTON Jamie, JOHNSON Matthew, and CIPOLLA Roberto. Semantic texton forests for image categorization and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008: 1-8. doi: 10.1109/CVPR.2008.4587503.
    WEI Yunchao, LIANG Xiaodan, CHEN Yunpeng, et al. STC: a simple to complex framework for weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11): 2314-2320. doi: 10.1109/TPAMI.2016.2636150.
    VEZHNEVETS A, FERRARI V, and BUHMANN J. M. Weakly supervised semantic segmentation with a multi-image model[C]. IEEE International Conference on Computer Vision, Washington, DC, USA, 2011: 643-650. doi: 10.1109/ ICCV.2011.6126299.
    ZENG Zinan, XIAO Shijie, JIA Kui, et al. Learning by associating ambiguously labeled images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 708-715. doi: 10.1109/CVPR.2013.97.
    VEZHNEVETS A, BUHMANN J M, and FERRARI V. Active learning for semantic segmentation with expected change[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2012: 3162-3169. doi: 10.1109/CVPR.2012.6248050.
    YING P, LIU J, and LU H. Dictionary learning based superpixels clustering for weakly-supervised semantic segmentation[C]. IEEE International Conference on Image Processing, Quebec City, QC, Canada, 2015: 4258-4262. doi: 10.1109/ICIP.2015.7351609.
    OQUAB Maxime, BOTTOU Leon, LAPTEV Ivan, et al. Is object localization for free? Weakly-supervised learning with convolutional neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 685-694. doi: 10.1109/CVPR.2015.7298668.
    PAPANDREOU George, CHEN Liang-chieh, MURPHY Kevin, et al. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1742-1750, doi: 10.1109/ICCV.2015. 203.
    PINHEIRO Pedro O and COLLOBERT Ronan. From image- level to pixel-level labeling with Convolutional Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 1713-1721. doi: 10.1109/CVPR.2015.7298780.
    XU Jia, SCHWING A G, and URTASUN R. Tell me what you see and i will show you where it is[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 3190-3197. doi: 10.1109/CVPR.2014.408.
    CABRAL R, TORRE F D L, COSTEIRA J P, et al. Matrix completion for weakly-supervised multi-label image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 121-135. doi: 10.1109/ TPAMI.2014.2343234.
    KOLMOGOROV Vladimir and ZABIH R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159. doi: 10.1109/TPAMI.2004.1262177.
    GEURTS Pierre, DAMIEN Ernst, and LOUIS Wehenkel. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. doi: 10.1007/s10994-006-6226-1.
    JIANG Huaizu, WANG Jingdong, YUAN Zejian, et al. Salient object detection: A discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2016, 9(4): 1-18. doi: 10.1007/s11263-016-0977-3.
    GOFERMAN Stas, ZELNIK-MANOR Lihi, and TAL Ayellet. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(10): 1915-1926. doi: 10.1109/TPAMI.2011.272.
    SHOTTON Jamie, WINN John, ROTHER Carsten, et al. Texton Boost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]. European Conference on Computer Vision, Graz, Austria, 2006: 1-15. doi: 10.1007/11744023-1.
    LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. TurboPixels: fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. doi: 10.1109/TPAMI.2009.96.
    LADICKY L, RUSSELL C, KOHLI P, et al. Associative hierarchical random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1056-1077. doi: 10.1109/TPAMI.2013.165.
    VERBEEK J and TRIGGS B. Region classification with markov field aspect models[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007: 1-8. doi: 10.1109/CVPR.2007.383098.
  • 加载中
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  144
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-11-27
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回