高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水下成像模型的图像清晰化算法

杨爱萍 曲畅 王建 张莉云

杨爱萍, 曲畅, 王建, 张莉云. 基于水下成像模型的图像清晰化算法[J]. 电子与信息学报, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
引用本文: 杨爱萍, 曲畅, 王建, 张莉云. 基于水下成像模型的图像清晰化算法[J]. 电子与信息学报, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
Underwater Image Visibility Restoration Based on Underwater Imaging Model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460
Citation: Underwater Image Visibility Restoration Based on Underwater Imaging Model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305. doi: 10.11999/JEIT170460

基于水下成像模型的图像清晰化算法

doi: 10.11999/JEIT170460
基金项目: 

国家自然科学基金(61372145, 61472274)

Underwater Image Visibility Restoration Based on Underwater Imaging Model

Funds: 

The National Natural Science Foundation of China (61372145, 61472274)

  • 摘要: 受水下场景中有机物和悬浮颗粒的影响,水下图像存在对比度低、颜色失真和细节丢失等问题。同时,水下场景中通常有人工光源存在,造成图像光照不均。传统基于图像去雾的方法用于水下图像复原时效果欠佳,为充分考虑水对光的吸收和散射作用,近期提出了新的水下成像模型和图像复原方法。但是这些方法未考虑红通道影响,导致估计的散射比偏大;另外,也未考虑人工光源的影响,导致估计的背景光过大。针对这些问题,该文提出一套有效的水下图像清晰化方案。首先,通过设置阈值确定是否将红通道信息用于暗通道计算,并将反映人工光源影响的饱和度指标用于散射比估计,以减小人工光源的影响。由此,提出了基于红通道预判和饱和度指标的暗通道计算方法。然后,根据三通道衰减系数比估计每个通道的透射率,可弥补目前很多方法假设蓝绿通道透射率一致的缺陷。最后,利用Shades of Gray算法估计环境光,并结合新的水下成像模型得到复原图像。实验结果表明,该文算法可显著提升图像的对比度,得到颜色自然、细节清晰的复原图像。
  • HUANG Bingjing, LIU Tiegen, HU Haofeng, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826.
    LI Chongyi, GUO Jichang, CONG Runming, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677. doi: 10.1109/TIP.2016.2612882.
    DREWS P, NASCIMENTO E R, BOTELHO S, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24-35. doi: 10.1109/MCG.2016.26.
    杨爱萍, 张莉云, 曲畅, 等. 基于加权 L1 正则化的水下图像清晰化算法[J]. 电子与信息学报, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics Information Technology, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    WEN Haocheng, TIAN Yonghong, HUANG Tiejun, et al. Single underwater image enhancement with a new optical model[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 753-756.
    ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]. IEEE Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2012: 81-88.
    FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A retinex-based enhancing approach for single underwater image[C]. IEEE International Conference on Image Processing (ICIP), Paris, France, 2014: 4572-4576.
    GALDRAN A, PARDO D, PICON A, et al. Automatic red-channel underwater image restoration[J]. Journal of Visual Communication and Image Representation, 2015, 26: 132-145. doi: 10.1016/j.jvcir.2014.11.006.
    CHENG Chiayang, SUNG Chiachi, and CHANG Hernghua. Underwater image restoration by red-dark channel prior and point spread function deconvolution[C]. IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpar, Malaysia, 2015: 110-115.
    LU Huimin, LI Yujie, XU Xing, et al. Underwater image enhancement method using weighted guided trigonometric filtering and artificial light correction[J]. Journal of Visual Communication and Image Representation, 2016, 38: 504-516. doi: 10.1016/j.jvcir.2016.03.029.
    MALLIK S, KHAN S S, and PATI U C. Underwater image enhancement based on dark channel prior and histogram equalization[C]. IEEE International Conference on Innovations in Information Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2016: 139-144.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[C]. European Conference on Computer Vision (ECCV), Crete, Greece, 2010: 1-14.
    ZHAO Xinwei, JIN Tao, and QU Song. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172. doi: 10.1016/j.oceaneng.2014.11.036.
    PARK D, PARK H, HAN D K, et al. Single image dehazing with image entropy and information fidelity[C]. IEEE International Conference on Image Processing(ICIP), Paris, France, 2014: 4037-4041.
    LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. doi: 10.1038/ scientificamerican1277-108.
    BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of The Franklin Institute- engineering and Applied Mathematics, 1980, 310(1): 1-26. doi: 10.1016/0016-0032(80)90058-7.
    FINLAYSON G D and TREZZI E. Shades of gray and colour constancy[C]. Color Imaging Conference(CIC), Arizona, USA, 2004: 37-41.
    LI Fang, WU Jinyong, WANG Yike, et al. A color cast detection algorithm of robust performance[C]. IEEE Fifth International Conference on Advanced Computational Intelligence(ICACI), Nanjing, China, 2012: 662-664.
  • 加载中
计量
  • 文章访问数:  1979
  • HTML全文浏览量:  223
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-11-02
  • 刊出日期:  2018-02-19

目录

    /

    返回文章
    返回