高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温度特征分析的硬件木马检测方法

钟晶鑫 王建业 阚保强

钟晶鑫, 王建业, 阚保强. 基于温度特征分析的硬件木马检测方法[J]. 电子与信息学报, 2018, 40(3): 743-749. doi: 10.11999/JEIT170443
引用本文: 钟晶鑫, 王建业, 阚保强. 基于温度特征分析的硬件木马检测方法[J]. 电子与信息学报, 2018, 40(3): 743-749. doi: 10.11999/JEIT170443
ZHONG Jingxin, WANG Jianye, KAN Baoqiang. Hardware Trojan Detection Through Temperature Characteristics Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(3): 743-749. doi: 10.11999/JEIT170443
Citation: ZHONG Jingxin, WANG Jianye, KAN Baoqiang. Hardware Trojan Detection Through Temperature Characteristics Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(3): 743-749. doi: 10.11999/JEIT170443

基于温度特征分析的硬件木马检测方法

doi: 10.11999/JEIT170443

Hardware Trojan Detection Through Temperature Characteristics Analysis

  • 摘要: 硬件木马是一种在特定条件下使集成电路失效或泄露机密信息等的恶意电路,给现代信息系统带来了严重的安全隐患。该文基于硬件木马在芯片工作之初造成的温度响应特征,提出一种利用芯片温度变化特性并进行比对的硬件木马检测方法。该方法采用环形振荡器作为片内温度特征测量传感器,提取温度变化特征信息,并采用曲线拟合评价指标来评估硬件木马对温度变化特征的影响,通过比对无木马芯片温度响应特征从而完成木马检测。通过对10个不同芯片的检测,结果表明该方法能够对面积消耗32个逻辑单元硬件木马的检测率达到100%,对16个逻辑单元检测概率也能达到90%;同时检测结果表明该方法完成硬件木马检测后,能够对硬件木马的植入位置进行粗定位。
  • 刘长龙. 基于侧信道分析的硬件木马检测技术研究[D]. [博士论文], 天津大学, 2013: 1-8.
    LIU C L. Research of hardware Trojans detection technology based on side channel analysis[D]. [Ph.D. dissertation], Tianjin University, 2013: 1-8.
    YANG K and HICKS M. Analog malicious hardware[C]. IEEE Symposium on Security and Privacy Conference, San Jose, USA, 2016: 18-37. doi: 10.1109/SP.2016.10.
    SUBRAMANYAN P, TSISKARIDZE N, and LI Wenchao. Reverse engineering digital circuits using structural and functional analyses[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(1): 63-80. doi: 10.1109/TETC. 2013.2294918.
    BAO Chongxi, FORTE D , and SRIVASTAVE A. On Reverse engineering-based hardware Trojan detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 49-57. doi: 10.1109/TCAD. 2015.2488495.
    AGRAWAL D and BAKTIR S. Trojan detection using IC fingerprinting[C]. IEEE Symposium on Security and Privacy Conference, Berkeley, USA, 2007: 296-310. doi: 10.1109/SP. 2007.36.
    JIN Y and MAKRIS Y. Hardware Trojan detection using path delay fingerprint[C]. IEEE International Workshop on Hardware-Oriented Security and Trust Conference, Anaheim, USA, 2008: 51-57. doi: 10.1109/HST.2008.4559049.
    AARESTAD J, ACHARYYA D, and RAD R. Detecting Trojans through leakage current analysis using multiple supply pad IDDQs[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4): 893-904. doi: 10.1109/ TIFS.2010.2061228.
    NOWROZ A N, HU Kangqiao, and KOUSHANFAR F. Novel techniques for high-sensitivity hardware Trojan detection using thermal and power maps[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2014, 33(12): 1792-1805. doi: 10.1109/TCAD.2014.2354293.
    SOLL O and KORAK T. EM-based detection of hardware Trojans on FPGAs[C]. IEEE International Symposium on Hardware-Oriented Security and Trust Conference, California, USA, 2014: 84-87. doi: 10.1109/HST.2014. 6855574.
    NGO X T, NAJM Z, and BHASIN S. Method taking into account process dispersion to detect hardware Trojan horse by side-channel analysis[J]. Journal of Cryptographic Engineering, 2016, 6(3): 239-247. doi: 10.1007/s13389-016- 0129-2.
    汪鹏君, 张跃军, 张学龙, 等. 防御差分功耗分析攻击技术研究[J]. 电子与信息学报, 2012, 34(11): 2774-2784. doi: 10.3724 /SP.J.1146.2012.00555.
    WANG Pengjun, ZHANG Yuejun, ZHANG Xuelong, et al. Research of differential power analysis countermeasures[J]. Journal of Electronics Information Technology, 2012, 34(11): 2774-2784. doi: 10.3724/SP.J.1146.2012.00555.
    SREEDHAR A, KUNDU S, and KOREN I. On reliability Trojan injection and detection[J]. Journal on Low Power Electronics, 2012, 8(5): 674-683. doi: 10.1166/jolpe.2012. 1225.34.
    薛明富, 胡爱群, 王箭. 基于探索式分区和测试向量生成的硬件木马检测方法[J]. 电子学报, 2016, 44(5): 1132-1138. doi: 10.3969/j.issn.0372-2112.2016.05.017.
    XUE Mingfu, HU Aiqun, and WANG Jian. A novel hardware Trojan detection technique using heuristic partition and test pattern generation[J]. Acta Electronica Sinica, 2016, 44(5): 1132-1138. doi: 10.3969/j.issn.0372-2112.2016.05.017.
    KULKARNI A, PINO Y, and MOHSENIN T. SVM-based real-time hardware Trojan detection for many-core platform[C]. IEEE International Symposium on Quality Electronic Design Conference, California, USA, 2016: 362-367. doi: 10.1109/ISQED.2016.7479228.
    CHAKRABORTY R S and PAUL S. On-demand transparency for improving hardware Trojan detectability[C]. IEEE International Workshop on Hardware-Oriented Security and Trust Conference, Anaheim, USA, 2008: 48-50. doi: 10.1109/HST.2008.4559048.
    ZHOU Bin, ZHANG Wei, THAMBIPILLAI S, et al. Cost-efficient acceleration of hardware Trojan detection through fan-out cone analysis and weighted random pattern technique[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(5): 792-805. doi: 10.1109/TCAD.2015.2460551.
    LI Jie and LACH J. At-speed delay characterization for IC authentication and Trojan horse detection[C]. IEEE International Workshop on Hardware-Oriented Security and Trust Conference, Anaheim, USA, 2008: 8-14. doi: 10.1109/ HST.2008.4559038.
    JIN Y and KUPP N. DFTT: Design for Trojan test[C]. IEEE International Conference on Electronics Circuits Systems, Athens, Greece, 2010: 1168-1171. doi: 10.1109/ ICECS.2010.5724725.
    ZHANG Xuihui and TEHRANIPOOR M. RON: An on-chip ring oscillator network for hardware Trojan detection[C]. Design Automation Test in Europe Conference Exhibition, Grenoble, France, 2011: 1-6. doi: 10.1109/DATE. 2011.5763260.
    XIAO Kan and TEHRANIPOOR M. BISA: Built-in self-authentication for preventing hardware Trojan insertion[C]. IEEE International Symposium on Hardware- Oriented Security and Trust Conference, Anaheim, USA, 2013: 45-50. doi: 10.1109/HST.2013.6581564.
    WU Tony F, GANESAN K, HU Yunqing, et al. TPAD: Hardware Trojan prevention and detection for trusted integrated circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(4): 521-534. doi: 10.1109/TCAD.2015.2474373.
  • 加载中
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  129
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-09-18
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回