高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于块稀疏的电阻抗成像算法

王琦 张鹏程 汪剑鸣 李秀艳 连志杰 陈庆良 陈彤云 陈晓静 贺静 段晓杰 王化祥

王琦, 张鹏程, 汪剑鸣, 李秀艳, 连志杰, 陈庆良, 陈彤云, 陈晓静, 贺静, 段晓杰, 王化祥. 基于块稀疏的电阻抗成像算法[J]. 电子与信息学报, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425
引用本文: 王琦, 张鹏程, 汪剑鸣, 李秀艳, 连志杰, 陈庆良, 陈彤云, 陈晓静, 贺静, 段晓杰, 王化祥. 基于块稀疏的电阻抗成像算法[J]. 电子与信息学报, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425
Sun Shao-Jie, Wu Qiong, Li Guo-Hui. Blind Image Deconvolution Algorithm for Camera-shake Deblurring Based on Variational Bayesian Estimation[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2674-2679. doi: 10.3724/SP.J.1146.2009.01600
Citation: WANG Qi, ZHANG Pengcheng, WANG Jianming, LI Xiuyan, LIAN Zhijie, CHEN Qingliang, CHEN Tongyun, CHEN Xiaojing, HE Jing, DUAN Xiaojie, WANG Huaxiang. Block-Sparse Reconstruction for Electrical Impedance Tomography[J]. Journal of Electronics & Information Technology, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425

基于块稀疏的电阻抗成像算法

doi: 10.11999/JEIT170425
基金项目: 

国家科技支撑计划重点项目(2013BAF06B00),国家自然科学基金(61601324, 61373104, 61402330, 61405143),天津市应用基础与前沿技术研究计划(15JCQNJC01500)

Block-Sparse Reconstruction for Electrical Impedance Tomography

Funds: 

The Key Projects of National Science and Technology Support Program (2013BAF06B00), The National Natural Science Foundation of China (61601324, 61373104, 61402330, 61405143), The Natural Science Foundation of Tianjin Municipal Science and Technology Commission (15JCQNJC01500)

  • 摘要: 该文提出一种基于自适应块稀疏字典学习的电阻抗图像重建算法,构建了分块稀疏字典,较好地保留了重建图像的细节信息;同时,将字典学习与图像重建交替进行,并将迭代重建的中间结果作为稀疏字典的训练样本,有效提高了字典学习效果。数值仿真与实验重建结果表明,新方法对电阻抗成像系统测量噪声具有较好的鲁棒性,能准确重构电导率分布图像,特别是对突变细节的准确恢复。
  • WANG Q, LIAN Z, WANG J, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation[J]. Review of Scientific Instruments, 2016, 87(11): 114707, doi: 10.1063/1.4966998.
    SBARBARO D, VAUHKONEN M, and JOHANSEN T A. State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization[J]. Inverse Problems, 2015, 31(4): 045004, doi: 10.1088/0266- 5611/31/4/045004.
    Ye J, WANG H, and YANG W. Image reconstruction for electrical capacitance tomography based on sparse representation[J]. IEEE Transactions on Instrumentation Measurement, 2015, 64(1): 89-102. doi: 10.1109/TIM.2014. 2329738.
    LIU Y, YANG Z, and YANG L. Online signature verification based on DCT and sparse representation[J]. IEEE Transactions on Cybern, 2015, 45(11): 2498-2511. doi: 10.1109/TCYB.2014.2375959.
    NAZZAL M and OZKARAMANLI H. Wavelet domain dictionary learning-based single image superresolution[J]. Signal, Image and Video Processing, 2015, 1(7): 1-11. doi: 10.1007/s11760-013-0602-7.
    WIECZOREK M, FRIKEL J, VOGEL J, et al. X-ray computed tomography using curvelet sparse regularization[J]. Medical Physics, 2015, 42(4): 1555-1567. doi: 10.1118/ 1.4914368.
    LIU Y, LIU S, and WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi: 10.1016/j.inffus.2014.09.004.
    GARDE H and KNUDSEN K. Sparsity prior for electrical impedance tomography with partial data[J]. Inverse Problems in Science and Engineering, 2016(3): 524-541. doi: 10.1080/17415977.2015.1047365.
    JIN B, KHAN T, and MAASS P. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization[J]. International Journal for Numerical Methods in Engineering, 2012, 89(3): 337-353. doi: 10.1002 /nme.3247.
    WANG Q, WANG H, ZHANG R, et al. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography[J]. Review of Scientific Instruments, 2012, 83(10): 104707. doi: 10.1063/1.4760253.
    YUE B, WANG S, LIANG X, et al. Robust coupled dictionary learning with 1-norm coefficients transition constraint for noisy image super-resolution[J]. Signal Processing, 2017, 140: 177-189. doi: 10.1016/j.sigpro.2017. 04.015.
    QU X, HOU Y, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. do: 10.1016/j.media.2013.09.007.
    HEMMING B, FAGERLUND A, and LASSILA A. Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method[J]. Measurement Science Technology, 2007, 18(11): 3373-3383. doi: 10.1088/0957-0233/18/11/017.
    WANG M. Inverse solutions for electrical impedance tomography based on conjugate gradients methods[J]. Measurement Science Technology, 2001, 13(1): 101-117. doi: 10.1088/0957-0233/13/1/314.
    BAO C, CAI J F, and JI H. Fast sparsity-based orthogonal dictionary learning for image restoration[C]. IEEE International Conference on Computer Vision IEEE, Sydney, 2014: 3384-3391. doi: 10.1109/ICCV.2013.420.
  • 期刊类型引用(9)

    1. 张睿敏,张甲艳,陶冶. 变分贝叶斯估计图像滤波去噪算法. 计算机技术与发展. 2021(07): 59-63 . 百度学术
    2. 郑恩,成耀天,林靖宇. 采用去抖动模糊算法的稠密三维重建. 计算机工程与应用. 2018(01): 217-223 . 百度学术
    3. 仇翔,戴明. 基于L0稀疏先验的相机抖动模糊图像盲复原. 光学精密工程. 2017(09): 2490-2498 . 百度学术
    4. 闫敬文,谢婷婷,彭鸿,刘攀华. 基于L_0范数正则项的运动图像去模糊. 激光与光电子学进展. 2017(02): 156-163 . 百度学术
    5. 杨亚威,李俊山,张士杰,芦鸿雁,胡双演. 基于视觉对比敏感度与恰可察觉失真感知的图像复原. 光学精密工程. 2014(02): 459-466 . 百度学术
    6. 阮光诗,孙俊喜,孙阳,刘红喜,赵立荣,刘广文. 处理异常值的相机抖动模糊图像复原. 中国图象图形学报. 2014(05): 677-682 . 百度学术
    7. 吴庆,肖力,孙志刚. 基于运动检测的图像去模糊算法. 计算机与现代化. 2013(12): 110-113 . 百度学术
    8. 杨敬娴,郭喜庆,孙鹏飞,韩文钦,解官宝. 集成学习法与双分裂Bregman正则化下的图像复原. 微电子学与计算机. 2013(12): 85-89+96 . 百度学术
    9. 李绍春,初永玲,王枚. 三维旋转运动模糊图像的复原方法研究. 赤峰学院学报(自然科学版). 2012(20): 22-24 . 百度学术

    其他类型引用(33)

  • 加载中
计量
  • 文章访问数:  1304
  • HTML全文浏览量:  126
  • PDF下载量:  166
  • 被引次数: 42
出版历程
  • 收稿日期:  2017-05-09
  • 修回日期:  2017-12-15
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回