高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒前景选择的显著性检测

王晨 樊养余 李波

王晨, 樊养余, 李波. 基于鲁棒前景选择的显著性检测[J]. 电子与信息学报, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
引用本文: 王晨, 樊养余, 李波. 基于鲁棒前景选择的显著性检测[J]. 电子与信息学报, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390
Citation: WANG Chen, FAN Yangyu, LI Bo. Saliency Detection Based on Robust Foreground Selection[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2644-2651. doi: 10.11999/JEIT170390

基于鲁棒前景选择的显著性检测

doi: 10.11999/JEIT170390
基金项目: 

国家自然科学基金(61379104)

Saliency Detection Based on Robust Foreground Selection

Funds: 

The National Natural Science Foundation of China (61379104)

  • 摘要: 显著性检测是指自动提取未知场景中符合人类视觉习惯的兴趣目标的方法。为了进一步提高检测的准确性,该文提出了利用鲁棒前景种子的流形排序进行显著性检测的算法。首先利用角点检测和边缘连接算法得到两个不同的凸包,用它们的交集初步确立目标区域的大致位置;然后利用凸包外边缘作为标准对凸包内的超像素进行相似度检测,将与大部分外边缘相似的超像素去除,得到更准确的目标样本作为前景种子;利用锚点图构建新的图结构表示数据节点之间的关系;接着通过基于前景和背景种子的流形排序算法对图像所有区域进行排序,并得到两种不同的显著性检测图;最后借助代价函数对显著性图进行优化,得到最终的显著性检测结果。经实验表明,与几种经典算法对比,该文方法可以进一步提高显著性算法的精确度和召回率。
  • GUO Chuanxin, LI Zhenbo, QIAO Xi, et al. Image segmentation of underwater sea cucumber using grabcut with saliency map[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(1): 147-152. doi: 10.6041/ j.issn.1000-1298. 2015. S0.025.
    郭传鑫, 李振波, 乔曦, 等. 基于融合显著图与GrabCut算法的水下海参图像分割[J]. 农业机械学报, 2015, 46(1): 147-152. doi: 10.6041/j.issn.1000-1298.2015.S0.025.
    薛梦霞, 彭晖, 刘士荣, 等. 基于视觉显著性的场景目标识别[J]. 控制工程, 2106, 23(5): 687-692. doi: 1671-7848(2016) 05-0687-06.
    XUE Mengxia, PENG Hui, LIU Shirong, et al. Scene object recognition based on visual saliency[J]. Control Engineering of China, 2106, 23(5): 687-692. doi: 1671-7848(2016)05-0687- 06.
    李然, 李艳灵, 崔子冠, 等. 视觉显著性导向的图像压缩感知测量与重建[J]. 华中科技大学学报(自然科学版), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    LI Ran, LI Yanling, CUI Ziguang, et al. Visual saliency oriented compressive sensing measurement and reconstruction of images[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(5): 13-18. doi: 10.13245/j.hust.160503.
    赵宏伟, 李清亮, 刘萍萍, 等. 特征点显著性约束的图像检索方法[J]. 吉林大学学报(工学版), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    ZHAO Hongwei, LI Qingliang, LIU Pingping, et al. Feature saliency constraint based image retrieval method[J]. Journal of Jinlin University (Engineering and Technology Edition), 2016, 46(2): 542-548. doi: 10.13229/j.cnki.jdxbgxb20160232.
    PERAZZI F, KRAHENBUHUL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 733-740. doi: 10.1109 /CVPR.2012. 6247743.
    WEI Yichen, WEN Fang, ZHU Wangjing, et al. Geodesic saliency using background priors[C]. European Conference on Computer Vision 2012, Firenze, Italy, 2012: 29-42. doi: 10.1007/978-3-642-33712-3_3.
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR.2013.407.
    ZHU Wangjiang, LIANG Shuang, WEI Yiche, et al. Saliency optimization from robust background detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 2814-2821. doi: 10.1109/CVPR.2014.360.
    LIU Tie, SUN Jian, ZHENG Nanning, et al. Learning to detect a salient object[C]. Computer Vision and Pattern Recognition, 2007, Minneapolis, USA, 2007: 353-367. doi: 10.1109/CVPR.2007.383047.
    YANG Jimei and YANG Minghsuan. Top-down visual saliency via joint CRF and dictionary learning[C]. Computer Vision and Pattern Recognition 2012, Providence, USA, 2012: 2296-2303. doi: 10.1109/CVPR.2012.6247940.
    GOPALAKRISHNAN V, HU Y, and RAJAN D. Random walks on graphs for salient object detection in images[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3232-3242. doi: 10.1109/TIP.2010.2053940.
    吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    LU Jianyong and TANG Zhenmin. An imporved graph-based manifold ranking for salient object detection[J]. Journal of Elecctronics Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    QI Wei, CHENG Mingming, BORJI Ali, et al. Saliency-Rank: Two-stage manifold ranking for salient object detection[J]. Computational Visual Media, 2015, 1(4): 309-320. doi: 10. 1007/s41095-015-0028y.
    XIE Yulin, LU Huchuan, and YANG Minghsuan. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698. doi: 10.1109/TIP. 2012.2216276.
    LIU Risheng, CAO Junjie, LIN Zhouchen, et al. Adaptive differential equation learning for visual saliency detection[C]. Computer Vision and Pattern Recognition 2014, Columbus, USA, 2014: 3862-3869. doi: 10.1109/CVPR.2014.494.
    林晓, 王燕玲, 朱恒亮, 等. 改进凸包的贝叶斯模型显著性检测算法[J]. 计算机辅助设计与图形学学报, 2017, 29(2): 221-228.
    LIN Xiao, WANG Yanling, ZHU Henliang, et al. Saliency detection based on the Bayesian model of improved convex hull[J]. Journal of computer-Aided Design and Computer Graphics, 2017, 29(2): 221-228.
    ZHOU D, WESTON J, GRETTON A, et al. Ranking on data manifolds[C]. Neural Information Processing Systems 2003, Vancouver, Canada, 2003: 169-176.
    WEIJER J, GEVERS T, and BAGDANOV A. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 150-156. doi: 10.1109/ TPAMI.2006.3.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/ TPAMI.2012.120.
    LIU Wei, HE Junfeng, and CHANG Shihfu. Large graph construction for scalable semi-supervised learning[C]. The 27th International Conference on Machine Learning, Haifa, 2010: 679-686.
    YANG Y, NIE F, XU D, et al. A multimedia retrieval framework basd on semi-supervised ranking and relevance feedback[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 723-742. doi: 10.1109/ TPAMI.2011.170.
    YAN Qiong, SHI Jianping, XU Li, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729. doi: 10.1109/ TPAMI.2015.2465960.
    ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]. Computer Vision and Pattern Recognition 2009, Miami, USA, 2009: 1597-1604. doi: 10.1109 /CVPR.2009.5206596.
    CHENG M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]. Computer Vision and Pattern Recognition 2011, Colorado, 2011: 409-416. doi: 10.1109/CVPR.2011.5995344.
    YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]. Computer Vision and Pattern Recognition 2013, Portland, USA, 2013: 1155-1162. doi: 10.1109 /CVPR.2013.153.
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  131
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回