高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向物联网准静态信道的中继协作密钥生成方法

肖帅芳 郭云飞 白慧卿 金梁 黄开枝

肖帅芳, 郭云飞, 白慧卿, 金梁, 黄开枝. 面向物联网准静态信道的中继协作密钥生成方法[J]. 电子与信息学报, 2018, 40(1): 50-56. doi: 10.11999/JEIT170384
引用本文: 肖帅芳, 郭云飞, 白慧卿, 金梁, 黄开枝. 面向物联网准静态信道的中继协作密钥生成方法[J]. 电子与信息学报, 2018, 40(1): 50-56. doi: 10.11999/JEIT170384
XIAO Shuaifang, GUO Yunfei, BAI Huiqing, JIN Liang, HUANG Kaizhi. Relay Cooperative Secret Key Generation for Quasi-static Channels in Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(1): 50-56. doi: 10.11999/JEIT170384
Citation: XIAO Shuaifang, GUO Yunfei, BAI Huiqing, JIN Liang, HUANG Kaizhi. Relay Cooperative Secret Key Generation for Quasi-static Channels in Internet of Things[J]. Journal of Electronics & Information Technology, 2018, 40(1): 50-56. doi: 10.11999/JEIT170384

面向物联网准静态信道的中继协作密钥生成方法

doi: 10.11999/JEIT170384
基金项目: 

国家自然科学基金(61379006),国家863计划项目(2015AA01A708),国家自然科学基金创新群体项目(61521003)

Relay Cooperative Secret Key Generation for Quasi-static Channels in Internet of Things

Funds: 

The National Natural Science Foundation of China (61379006), The National 863 Program of China (2015AA01A708), The Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61521003)

  • 摘要: 针对物联网准静态信道下密钥生成速率低的问题,该文提出一种基于中继节点协作的密钥生成方法。首先,通信双方通过信道估计获得直达信道和部分中继信道信息;然后,中继节点采用网络编码技术参与协作,使得通信双方获取全部中继信道信息;最后,通信双方在直达信道上进行密钥协商,利用直达信道信息、中继信道信息与协商信息共同生成相同的密钥。安全性分析表明该方法能够提高可达密钥速率,并且随着信噪比的提高,可达密钥速率呈线性增长,趋于最优值。蒙特卡洛仿真验证了理论分析的结果,并得出了增加中继节点数量、选取信道变化幅度大的中继节点,可以进一步提高可达密钥速率。
  • SAHA H N, MANDAL A, and SINHA A. Recent trends in the Internet of Things[C]. IEEE Computing and Communication Workshop and Conference, Las Vegas, USA, 2017: 1-4.
    LINDQVIST U and NEUMANN P G. The future of the Internet of Things[J]. Communications of the ACM, 2017, 60(2): 26-30. doi: 10.1145/3029589.
    MAVROMOUSTAKIS C X, MASTORAKIS G, and BATALLA J M. Internet of Things (IoT) in 5G Mobile Technologies[M]. Berlin: Springer International Publishing, 2016: 127-227.
    SAMAILA M G, NETO M, FERNANDES D A B, et al. Security Challenges of the Internet of Things[M]. Berlin: Springer International Publishing, 2017: 53-82.
    LIU Y L, CHEN H H, and WANG L M. Physical layer security for next generation wireless networks: Theories, technologies, and challenges[J]. IEEE Communications Surveys Tutorials, 2017, 19(1): 347-376. doi: 10.1109/ COMST.2016.2598968.
    ZHANG J Q, TRUNG Q D, ALAN M, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016(4): 614-626. doi: 10.1109/ACCESS.2016.2521718.
    CASTEL T, TORRE P V, and ROGIER H. RSS-based secret key generation for indoor and outdoor WBANs using on-body sensor nodes[C]. International Conference on Military Communications and Information Systems, Brussels, Belgium, 2016: 1-5.
    ZHU X, XU F, NOVAK E, et al. Using wireless link dynamics to extract a secret key in vehicular scenarios[J]. IEEE Transactions on Mobile Computing, 2016, 16(7): 2065-2078. doi: 10.1109/TMC.2016.2557784.
    MADISEH M G, NEVILLE S W, and MCGUIRE M L. Applying beamforming to address temporal correlation in wireless channel characterization based secret key generation [J]. IEEE Transactions on Information Forensics Security, 2012, 7(4): 1278-1287. doi: 10.1109/TIFS.2012.2195176.
    HUANG P and WANG X. Fast secret key generation in static wireless networks: A virtual channel approach[C]. IEEE International Conference on Computer Communications, Turin, Italy, 2013: 2292-2300.
    CHEN D, QIN Z, MAO X, et al. SmokeGrenade: An efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1731-1745. doi: 10.1109/TIFS.2013.2278834.
    GOLLAKOTA S and KATABI D. Physical layer wireless security made fast and channel independent[C]. IEEE International Conference on Computer Communications, Shanghai, China, 2011: 1125-1133.
    MUKHERJEE A. Physical-layer security in the Internet of Things: Sensing and communication confidentiality under resource constraints[J]. Proceedings of the IEEE, 2015, 103(10): 1748-1761. doi: 10.1109/JPROC.2015.2466548.
    CSISZAR I and NARAYAN P. Common randomness and secret key generation with a helper[J]. IEEE Transactions on Information Theory, 2000, 46(2): 344-366. doi: 10.1109/18. 825796.
    TAKAYUKI S, HISATO I, and HIDEICHI S. Physical-layer secret key agreement in two-way wireless relaying systems[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 650-660. doi: 10.1109/TIFS.2011.2147314.
    LAI L, LIANG Y, and DU W. Cooperative key generation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1578-1588. doi: 10.1109/JSAC. 2012.120924.
    YE C, MATHUR S, REZNIK A, et al. Information- theoretically secret key generation for fading wireless channels[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 240-254. doi: 10.1109/TIFS.2010. 2043187.
  • 加载中
计量
  • 文章访问数:  1342
  • HTML全文浏览量:  186
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-09-11
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回