高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的CFAR目标检测算法

马俊虎 刘长远 甘露

马俊虎, 刘长远, 甘露. 基于压缩感知的CFAR目标检测算法[J]. 电子与信息学报, 2017, 39(12): 2899-2904. doi: 10.11999/JEIT170382
引用本文: 马俊虎, 刘长远, 甘露. 基于压缩感知的CFAR目标检测算法[J]. 电子与信息学报, 2017, 39(12): 2899-2904. doi: 10.11999/JEIT170382
MA Junhu, LIU Changyuan, GAN Lu. CFAR Target Detection Algorithm Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2899-2904. doi: 10.11999/JEIT170382
Citation: MA Junhu, LIU Changyuan, GAN Lu. CFAR Target Detection Algorithm Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2899-2904. doi: 10.11999/JEIT170382

基于压缩感知的CFAR目标检测算法

doi: 10.11999/JEIT170382
基金项目: 

国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U1530126)

CFAR Target Detection Algorithm Based on Compressive Sensing

Funds: 

The National Natural Science Foundation of China-China Academy of Engineering Physics Joint Foundation (NSAF) (U1530126)

  • 摘要: 该文提出一种基于压缩感知(Compressive Sensing, CS)的恒虚警率(Constant False Alarm Rate, CFAR)目标检测算法,首先分析了目标在距离单元上具有稀疏特性,并构造了目标回波的稀疏字典,设计特定的测量矩阵以及基于CS的CFAR检测结构,然后实现了对回波信号的压缩测量和CFAR检测,无需对回波信号重构。该文提出的算法具有很好的降噪性能并提高了检测效率,可以对低信噪比、低信杂比信号成功检测。仿真结果表明:当信噪比为-14 dB,信杂比为-10 dB时,该算法与传统匹配滤波检测算法相比,减少了一半数据运算量,性能明显优于压缩匹配滤波检测算法。
  • LI Ying, ZHANG Gong, TAO Yu, et al. Target detection in compressive sensing based on step frequency radar[J]. Modern Radar, 2015, 37(9): 22-25. doi: 10.16592/j.cnki.10047859.
    李莹, 张弓, 陶宇, 等. 基于压缩感知的步进频雷达目标检测算法[J]. 现代雷达, 2015, 37(9): 22-25. doi: 10.16592/j.cnki. 10047859.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 2130. doi: 10.1109/MSP.2007.914731.
    吴建宇, 徐海东, 王珏. 基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构[J]. 电子与信息学报, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079.
    WU Jianyu, XU Haidong, and WANG Jue. A new joint reconstruction algorithm of compressed sensing for multichannel EEG signals based on over-complete dictionary approach[J]. Journal of Electronic Information Technology, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079.
    岑翼刚, 岑丽辉. 基于峰值变换的信号稀疏表示及重建[J]. 电子与信息学报, 2011, 33(2): 326-331. doi: 10.3724/SP.J. 1146.2010.00305.
    CEN Yigang and CEN Lihui. Sparse representation and reconstruction of signals based on the peak transform[J]. Journal of Electronic Information Technology, 2011, 33(2): 326-331. doi: 10.3724/SP.J.1146.2010.00305.
    ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414. doi: 10.1016./j. sigpro.2009.11.009.
    王伟伟, 廖桂生, 朱圣棋, 等. 一种基于压缩感知的地面运动目标检测方法[J]. 电子与信息学报, 2012, 34(8): 1872-1878. doi: 10.3724/SP.J.1146.2011.01285.
    WANG Weiwei, LIAO Guisheng, ZHU Shengqi, et al. A ground moving target indication method based on compressive sensing[J]. Journal of Electronic Information Technology, 2012, 34(8): 1872-1878. doi: 10.3724/SP.J.1146. 2011.01285.
    赵瑞珍, 王若乾, 张凤珍, 等. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
    ZHAO Ruizhen, WANG Ruoqian, ZHANG Fengzhen, et al. Research on the blocked ordered vandermonde matrix used as measurement matrix for compressed sensing[J]. Journal of Electronic Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
    王明宇. 复杂环境下雷达CFAR检测与分布式雷达CFAR检测研究[D]. [博士论文], 西北工业大学, 2001: 20-28.
    WANG Mingyu. Radar CFAR detection and distributed radar CFAR detection under complicated environments[D]. [Ph.D. dissertation], Northwestern Polytechnical University, 2001: 20-28.
    RAGHAVAN R S. Analysis of CA-CFAR processors for linear-law detection[J]. IEEE Transactions on Aerospace Electronic Systems, 1992, 28(3): 661-665. doi: 10.1109/7. 256288.
    ROHLING H. Radar CFAR threshold in clutter and multiple target situation[J]. IEEE Transactions on Aerospace Electronic Systems, 1983, 19(4): 608-621. doi: 10.1109/TAES. 1983.309350.
    胡勤振, 苏洪涛, 周生华, 等. 多基地雷达中双门限CFAR检测算法[J]. 电子与信息学报, 2016, 38(10): 2430-2436. doi: 10.11999/JEIT151163.
    HU Qinzhen, SU Hongtao, ZHOU Shenghua, et al. Double threshold CFAR detection for multisite radar[J]. Journal of Electronic Information Technology, 2016, 38(10): 2430-2436. doi: 10.11999/JEIT151163.
    赵兴刚, 王首勇. 一种基于KL分离度的改进矩阵CFAR检测方法[J]. 电子与信息学报, 2016, 38(4): 934-940. doi: 10.11999 /JEIT150711.
    ZHAO Xinggang and WANG Shouyong. An inproved matrix CFAR detection method base on KL divergence[J]. Journal of Electronic Information Technology. 2016, 38(4): 934-940. doi: 10.11999/JEIT150711.
    ANITORI L, ROSSUM W V, OTTEN M, et al. Compressive sensing radar: Simulations and experiments for target detection[C]. Signal Processing Conference, Marrakech, Morocco, 2014: 1-5.
    ANITORI L, ROSSUM W V, OTTEN M, et al. Compressive CFAR radar processing[C]. Compressive CFAR Radar Processing Tno, Repository, Bremen, Germany, 2013: 57-60.
    RAZAVI A, VALKAMA M, and CABRIC D. Compressive detection of random subspace signals[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4166-4179. doi: 10.1109/ TSP.2016.256.0132.
    HARIRI A and BABAIE M. Compressive detection of sparse signals in additive white gaussian noise without signal reconstruction[J]. Signal Processing, 2016, 131: 376-385. doi: 10.1016/j.sigpro.2016.08.020.
    理查兹, 邢孟道, 王彤, 等. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2008: 117-147.
    MARK A. RICHARDS, XING Mengdao, WANG Tong, et al. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2008: 117-147.
    DAVENPORT M A, WAKIN M B, and BARANIUK R G. The compressive matched filter[R]. Rice University, Technical Report TREE-0610, 2006.
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览量:  261
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-07-10
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回