高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于云推理模型的深度强化学习探索策略研究

李晨溪 曹雷 陈希亮 张永亮 徐志雄 彭辉 段理文

李晨溪, 曹雷, 陈希亮, 张永亮, 徐志雄, 彭辉, 段理文. 基于云推理模型的深度强化学习探索策略研究[J]. 电子与信息学报, 2018, 40(1): 244-248. doi: 10.11999/JEIT170347
引用本文: 李晨溪, 曹雷, 陈希亮, 张永亮, 徐志雄, 彭辉, 段理文. 基于云推理模型的深度强化学习探索策略研究[J]. 电子与信息学报, 2018, 40(1): 244-248. doi: 10.11999/JEIT170347
LI Chenxi, CAO Lei, CHEN Xiliang, ZHANG Yongliang, XU Zhixiong, PENG Hui, DUAN Liwen. Cloud Reasoning Model-Based Exploration for Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2018, 40(1): 244-248. doi: 10.11999/JEIT170347
Citation: LI Chenxi, CAO Lei, CHEN Xiliang, ZHANG Yongliang, XU Zhixiong, PENG Hui, DUAN Liwen. Cloud Reasoning Model-Based Exploration for Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2018, 40(1): 244-248. doi: 10.11999/JEIT170347

基于云推理模型的深度强化学习探索策略研究

doi: 10.11999/JEIT170347
基金项目: 

中电集团重点预研基金(6141B08010101),中国博士后科学基金(2015T81081, 2016M602974),江苏省自然科学青年基金(BK20140075)

Cloud Reasoning Model-Based Exploration for Deep Reinforcement Learning

Funds: 

The Advanced Research of China Electronics Technology Group Corporation (6141B08010101), China Postdoctoral Science Foundation (2015T81081, 2016M602974), The Jiangsu Natural Science Foundation for Youths (BK20140075)

  • 摘要: 强化学习通过与环境的交互学得任务的决策策略,具有自学习与在线学习的特点。但交互试错的机制也往往导致了算法的运行效率较低、收敛速度较慢。知识包含了人类经验和对事物的认知规律,利用知识引导智能体(agent)的学习,是解决上述问题的一种有效方法。该文尝试将定性规则知识引入到强化学习中,通过云推理模型对定性规则进行表示,将其作为探索策略引导智能体的动作选择,以减少智能体在状态-动作空间探索的盲目性。该文选用OpenAI Gym作为测试环境,通过在自定义的CartPole-v2中的实验,验证了提出的基于云推理模型探索策略的有效性,可以提高强化学习的学习效率,加快收敛速度。
  • MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[OL]. https://arxiv.org /abs/1312.5602v1, 2013.12.
    SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. MA: MIT Press, 1998: 3-24. doi: 10.1109/ TNN.1998.712192.
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human- level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236.
    OSBAND I, BLUNDELL C, PRITZEL A, et al. Deep exploration via bootstrapped DQN[C]. Proceedings of the 29th Neural Information Processing Systems, Barcelona, 2016: 4026-4034.
    BELLEMARE M, SRINIVASAN S, OSTROVSKI G, et al. Unifying count-based exploration and intrinsic motivation[C]. Proceedings of the 29th Neural Information Processing Systems, Barcelona, 2016: 1471-1479.
    HOUTHOOFT R, CHEN X, DUAN Y, et al. VIME: Variational information maximizing exploration[C]. Proceedings of the 29th Neural Information Processing Systems, Barcelona, 2016: 1109-1117.
    DAVENPORT T H, PRUSAK L, and PRUSAK L. Working Knowledge: How Organizations Manage What They Know [M]. Boston: Harvard Business School Press, 1997: 1-24. doi: 10.1145/347634.348775.
    SANTOS M and BOTELLA G. Dyna-H: A heuristic planning reinforcement learning algorithm applied to role-playing game strategy decision systems[J]. Knowledge-Based Systems, 2012, 32(8): 28-36.
    BIANCHI R A C, ROS R, and MANTARAS R L D. Improving reinforcement learning by using case based heuristics[C]. Proceedings of the International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development, Burlin, 2009: 75-89.
    KUHLMANN G, STONE P, MOONEY R, et al. Guiding a reinforcement learner with natural language advice: Initial results in RoboCup soccer[C]. Proceedings of the 19th National Conference on Artificial Intelligence Workshop on Supervisory Control of Learning and Adaptive Systems, California, 2004: 30-35.
    LI Deyi, CHEUNG D, SHI Xuemei, et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers Mathematics with Applications, 1998, 35(3): 99-123.
    SINGH S P. Learning to solve Markovian decision processes [D]. [Ph.D. dissertation], University of Massachusetts, Amherst, 1994: 66-72.
    HASSELT H V, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. Proceedings of the 30th AAAI Conference on Articial Intelligence, Phoenix, 2016: 2094-2100.
  • 加载中
计量
  • 文章访问数:  1584
  • HTML全文浏览量:  243
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-18
  • 修回日期:  2017-09-30
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回