高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻量扩展的射频指纹地图构造方法

刘文远 刘慧香 温丽云 王林

刘文远, 刘慧香, 温丽云, 王林. 轻量扩展的射频指纹地图构造方法[J]. 电子与信息学报, 2018, 40(2): 306-313. doi: 10.11999/JEIT170338
引用本文: 刘文远, 刘慧香, 温丽云, 王林. 轻量扩展的射频指纹地图构造方法[J]. 电子与信息学报, 2018, 40(2): 306-313. doi: 10.11999/JEIT170338
LIU Wenyuan, LIU Huixiang, WEN Liyun, WANG Lin. A Scalable Lightweight Radio Fingerprint Map Construction Method[J]. Journal of Electronics & Information Technology, 2018, 40(2): 306-313. doi: 10.11999/JEIT170338
Citation: LIU Wenyuan, LIU Huixiang, WEN Liyun, WANG Lin. A Scalable Lightweight Radio Fingerprint Map Construction Method[J]. Journal of Electronics & Information Technology, 2018, 40(2): 306-313. doi: 10.11999/JEIT170338

轻量扩展的射频指纹地图构造方法

doi: 10.11999/JEIT170338
基金项目: 

国家自然科学基金(61672448, 61772453),河北省留学归国人员择优资助项目(CL201625)

A Scalable Lightweight Radio Fingerprint Map Construction Method

Funds: 

The National Natural Science Foundation of China (61672448, 61772453), The Technology Foundation for Selected Overseas Chinese of Hebei Province (CL201625)

  • 摘要: 随着群智感知和机器学习的融合,基于射频指纹的室内定位技术引起研究者的广泛关注。然而现有工作存在指纹地图构建阶段开销过大形成的可扩展性和实时性瓶颈问题。针对这一问题,该文提出一个新颖的轻量可扩展指纹地图构造方法(FFIL)。在指纹构建阶段,将整个室内环境划分为多个环路快速分割地图并获取射频指纹;在指纹匹配阶段,首先计算AP与目标点间的距离,然后选择与圆环半径最相似的环路上的参考点一一匹配;在定位阶段,采用等高线聚类算法来提高定位精度。通过真实数据驱动的大量仿真和实验证明,FFIL能减小指纹地图构建的开销,同时提高定位精度和系统实时性。
  • YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C]. International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, USA, 2005: 205-218. doi: 10.1145/1067170. 1067193.
    BAHL P and PADMANABHAN V. RADAR: An in-building RF-based user location and tracking system[C]. IEEE International Conference on Computer Communications, Tel Aviv, Israel, 2000: 775-784. doi: 10.1109/INFCOM.2000. 832252.
    WANG Jie, GAO Qinghua, PAN Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495.
    WANG Jie, GAO Qinghua, YU Yan, et al. Time and energy efficient TOF-based device-free wireless localization[J]. IEEE Transactions on Industrial Informatics, 2016, 12(1): 158-168. doi: 10.1109/TII.2015.2501225.
    NI L, LIU Y, LAU Y, et al. LANDMARC: Indoor location sensing using active RFID[C]. IEEE International Conference on Pervasive Computing and Communications, Fort Worth, Texas, USA, 2003: 407-415. doi: 10.1109/PERCOM.2003. 1192765.
    WANG J and KATABI D. Dude, wheres my card? RFID positioning that works with multipath and non-line of sight[C]. Special Interest Group on Data Communication, Hong Kong, China, 2013: 51-62.
    TARZIA S, DINDA P, DICK R, et al. Indoor localization without infrastructure using the acoustic background spectrum[C]. International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, 2011: 155-168.
    LIU K, LIU X, and LI X. Guoguo: Enabling fine-grained indoor localization via smartphone[C]. International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 235-248.
    YANG Sehoon, JUNG Eunmi, and HAN Sangkook. Indoor location estimation based on visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013, 17(9): 1834-1837. doi: 10.1109/LCOMM.2013. 070913.131120.
    ALAHI A, HAQUE A, and LI F. RGB-W: When vision meets wireless[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3289-3297. doi: 10.1109/ICCV. 2015.376.
    王小好. 基于蓝牙无线技术的室内定位方法的研究[D]. [硕士论文], 浙江工业大学, 2007.
    WANG X H. A Study of indoor location based on Bluetooth technologies[D]. [Master dissertation], Zhejiang University of Technology, 2007.
    WU Chenshu, YANG Zheng, and LIU Yunhao. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444-457. doi: 10.1109/TMC.2014.2320254.
    WANG H, SEN S, ELGOHARY A, et al. No need to war-drive: Unsupervised indoor localization[C]. International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, Lake District, UK, 2012: 197-210.
    LIU Hongbo, YANG Jie, SIDHOM Simon, et al. Accurate wifi based localization for smartphones using peer assistance [J]. IEEE Transactions on Mobile Computing, 2014, 13(10): 2199-2214. doi: 10.1109/TMC.2013.140.
    SEN S, LEE J, KIM K, et al. Avoiding multipath to revive inbuilding wifi localization[C]. International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 249-262.
    SHU Yuanchao, HUANG Yinghua, ZHANG Jiaqi, et al. Gradient-based fingerprinting for indoor localization and tracking[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2424-2433. doi: 10.1109/TIE.2015.2509917.
    HE S, HU T, and CHAN S. Contour-based trilateration for indoor fingerprinting localization[C]. ACM Conference on Embedded Networked Sensor Systems, Seoul, South Korea, 2015: 225-238.
    王凯. 基于CSI测距的轻量级指纹室内定位技术研究[D]. [硕士论文], 西安电子科技大学, 2014.
    WANG K. Range-based Lightweight Fingerprint Indoor Localization Using CSI[D]. [Master dissertation], Xidian University, 2014.
    张梦丹, 卢光跃, 王宏刚, 等. 基于指纹算法的无线室内定位技术[J]. 电信科学, 2016, (10): 77-86. doi: 10.11959/j.issn. 1000-0801.2016267.
    ZHANG Mengdan, LU Guangyue, WANG Honggang, et al. Wireless indoor localization technology based on fingerprint algorithm[J]. Telecommunications Science, 2016, (10): 77-86. doi: 10.11959/j.issn.1000-0801.2016267.
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  150
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-09-11
  • 刊出日期:  2018-02-19

目录

    /

    返回文章
    返回