高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

协同信道空时优化MIMO无线传输系统

杨贵德 周渊平 夏文龙

杨贵德, 周渊平, 夏文龙. 协同信道空时优化MIMO无线传输系统[J]. 电子与信息学报, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321
引用本文: 杨贵德, 周渊平, 夏文龙. 协同信道空时优化MIMO无线传输系统[J]. 电子与信息学报, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321
YANG Guide, ZHOU Yuanping, XIA Wenlong . Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321
Citation: YANG Guide, ZHOU Yuanping, XIA Wenlong . Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(1): 102-107. doi: 10.11999/JEIT170321

协同信道空时优化MIMO无线传输系统

doi: 10.11999/JEIT170321
基金项目: 

高等学校博士学科点专项科研基金(20130191110006)

Cooperative Channel MIMO Wireless Transmission System with Space-time Optimization

Funds: 

University Doctoral Research Foundation of China (20130191110006)

  • 摘要: 该文提出一种基于虚拟信道的空时优化多输入多输出(MIMO)无线传输系统。通过在发射端产生不同的空时虚拟信道,与实际空间无线信道级联,构成系统的整体传输信道即协同空分信道。系统可以根据接收端的反馈信息采用模拟退火算法来优化虚拟信道,改善误码率(BER)性能。利用虚拟信道方法,可以使一根MIMO发射天线在同一时间、同一频段传输多路叠加合并后的数据信号,从而可以使发射的不同数据信号的总路数超过发射天线的数量,突破了现有MIMO系统在同一时间、同一频段最多只能发射与发射天线数量相等的不同数据信号的传统方式,可以显著提高系统的频谱效率。仿真结果和基于ZC706和AD9361硬件平台的微波暗室实际测试结果充分验证了新MIMO系统的有效性。
  • ZHANG Q, JIN S, MCKAY M, et al. Power allocation schemes for multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 5941-5955. doi: 10.1109/TWC.2015.2444856.
    HONG X M, WANG C X, THOMPSON J, et al. On spacefrequency correlation of UWB MIMO channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4201-4213. doi: 10.1109/TVT. 2010.2075947.
    LIU Y, AI B, and CHEN B H. Impact of mutual coupling on LTE-R MIMO capacity for antenna array configurations in high speed railway scenario[C]. IEEE Vehicular Technology Conference, Nanjing, China, 2016: 1-5.
    NTT DOCOMO, Inc. 5G radio access: Requirement, concept and techniques[R]. 5G White Paper, Tokyo, Japan, 2014.
    RIMAL B P, VAN D P, and MAIER M. Mobile edge computing empowered fiber-wireless access networks in the 5G era[J]. IEEE Communications Magazine, 2017, 55(2): 192-200. doi: 10.1109 /MCOM.2017.1600156CM.
    AL-ABBASI Z Q and SO D K C. Power allocation for sum rate maximization in non-orthogonal multiple access system [C]. Personal, Indoor and Mobile Radio Communications, Hong Kong, 2015: 1649-1653.
    DO N T, COSTA D B D, DUONG T Q, et al. A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT[J]. IEEE Communications Letters, 2017, 21(3): 664-667. doi: 10.1109/LCOMM.2016.2631606.
    DING Z G, DAI H Y, and POOR H V. Relay selection for cooperative NOMA[J]. IEEE Wireless Communications Letters, 2016, 5(4): 416-419. doi: 10.1109/LWC.2016. 2574709.
    ALWAKEEL A S, MEHANA A H, and GHONEIM A. Pilot hopping in massive MIMO systems with MMSE channel estimation[C]. International Conference on Computing, Networking and Communications, Silicon Valley, CA, USA, 2017: 298-302.
    UPADHYA K, VOROBYOV S A, and VEHKAPERA M. Superimposed pilots are superior for mitigating pilot contamination in massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2917-2932. doi: 10.1109/TSP. 2017.2675859.
    SONG N, YANG T, and SUN H. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550-554. doi: 10.1109/LSP.2017.2681689.
    SUN Q, HAN S F, PAN Z G, et al. On the ergodic capacity of MIMO NOMA systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 405-408. doi: 10.1109/LWC.2015. 2426709.
    SUN R J, WANG Y, WANG X S, et al. Transceiver design for cooperative nonorthogonal multiple access systems with wireless energy transfer[J]. IET Communications, 2016, 10(15): 1947-1955. doi: 10.1049/iet-com.2016.0120.
    DIAMANYOULAKIS P D, PAPPI K N, DING Z G, et al. Wireless-powered communications with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8422-8436. doi: 10.1109/ TWC.2016.2614937.
    SHIEH S L, LIN C H, HUANG Y C, et al. On gray labeling for downlink non-orthogonal multiple access without SIC[J]. IEEE Communications Letters, 2016, 20(9): 1721-1724. doi: 10.1109/LCOMM.2016.2584040.
    WINTERS J H. On the capacity of radio communication systems with diversity in a rayleigh fading environment[J]. IEEE Journal on Selected Areas in Communications, 1987, SAC-5(5): 871-878. doi: 10.1109/JSAC.1987.1146600.
    王青, 肖怀铁, 张安. 基于模拟退火算法的MIMO雷达稀疏线阵设计[J]. 计算机工程与应用, 2011, 47(8S): 272-276.
    WANG Q, XIAO H T, and ZHANG A. MIMO radar sparse linear array design based on simulated annealing algorithm [J]. Computer Engineering and Applications, 2011, 47(8S): 272-276.
    田景文, 高美娟. 人工神经网络算法研究及应用[M]. 北京: 北京理工大学出版社, 2006: 182-190.
  • 加载中
计量
  • 文章访问数:  1426
  • HTML全文浏览量:  170
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-08-30
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回