高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间目标卡尔曼滤波稀疏成像方法

汪玲 朱栋强 马凯莉 肖卓

汪玲, 朱栋强, 马凯莉, 肖卓. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
引用本文: 汪玲, 朱栋强, 马凯莉, 肖卓. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
WANG Ling, ZHU Dongqiang, MA Kaili, XIAO Zhuo. Sparse Imaging of Space Targets Using Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319
Citation: WANG Ling, ZHU Dongqiang, MA Kaili, XIAO Zhuo. Sparse Imaging of Space Targets Using Kalman Filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852. doi: 10.11999/JEIT170319

空间目标卡尔曼滤波稀疏成像方法

doi: 10.11999/JEIT170319
基金项目: 

总装实验技术研究项目(2015SY26A0003),南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170407),中央高校基本科研业务费专项资金

Sparse Imaging of Space Targets Using Kalman Filter

Funds: 

The Assembly Test Technology Research Project (2015SY26A0003), The Foundation of Graduate Innovation Center in NUAA (kfjj20170407), The Fundamental Research Funds for the Central Universities

  • 摘要: 鉴于卡尔曼滤波器(KF)具有优良的信号估计性能,将KF与贪婪算法相结合,该文给出稀疏约束下的基于KF的空间目标逆合成孔径雷达(ISAR)成像方法。考虑到有些空间目标尺寸较大或包含大尺寸部件,或成像积累时间较长,会引入越分辨单元走动(MTRC)和方位向2次相位调制,首先对回波进行MTRC校正,然后构建包含2次相位的观测矩阵,通过使图像锐度最大化,估计目标转动角速度,获得聚焦目标图像,并将估计转速用于方位向图像定标。卫星仿真ISAR数据处理验证了上述成像处理方法的有效性。成像效果优于传统距离多普勒(RD)和正交匹配追踪(OMP)方法。
  • PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar ISAR imaging[C]. EASCON,80; Electronics and Aerospace Systems Conference, New York, USA, 1980: 340-345.
    LI G, HOU Q, XU S, et al. Multi-target simultaneous ISAR imaging based on compressed sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, (1): 1-11. doi: 10.1186/s13634-016-0327-1.
    REN X, QIAO L, QIN Y, et al. Sparse regularization based imaging method for inverse synthetic aperture radar[C]. Progress in Electromagnetics Research Symposium, Guangzhou, China, 2016: 4348-4351. doi: 10.1109/PIERS. 2016.7735622.
    HU X, TONG N, DING S, et al. ISAR imaging with sparse stepped frequency waveforms via matrix completion[J]. Remote Sensing Letters, 2016, 7(9): 847-854. doi: 10.1080/ 2150704X.2016.1192699.
    苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J]. 电子与信息学报, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146.2013.01338.
    SU Wuge, WANG Hongqiang, DENG Bin, et al. Sparse bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531. doi: 10.3724/SP.J.1146. 2013.01338.
    RAO W, LI G, WANG X, et al. Parametric sparse representation method for ISAR imaging of rotating targets [J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(2): 910-919. doi: 10.1109/TAES.2014.120535.
    TOMEI S, BACCI A, GIUSTI E, et al. Compressive sensing- based inverse synthetic radar imaging from incomplete data[J]. IET Radar, Sonar Navigation, 2016, 10(2): 386-397. doi: 10.1049/iet-rsn.2015.0290.
    ZHANG L, XING M D, and QIU C W. Resolution enhancement for ISAR imaging under low SNR via improved statistical compressive sensing[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48 (10): 3824-3838. doi: 10.1109/TGRS.2010.2048575.
    BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory and ITS Applications to Radar, Sonar and Remote Sensing. Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016.7745734.
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193. doi: 10.3724/SP.J.1146.2012.01597
    WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193. doi: 10.3724/ SP.J.1146.2012.01597.
    VASWANI N. Kalman filtered compressed sensing[C]. IEEE International Conference on Image Processing, California, USA, 2008: 893-896. doi: 10.1109/ICIP.2008.4711899.
    WANG L and LOFFELD O. ISAR imaging using a null space -1 minimizing Kalman filter approach[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 232-236. doi: 10.1109/ CoSeRa.2016.7745735.
    APRILE A, MAURI A, and PASTINA D. Real time rotational motion compensation algorithm for focusing spot- SAR/ISAR images in case of variable rotation-rate[C]. European Radar Conference, Amsterdam, The Netherlands, 2004: 141-144.
    李源. 逆合成孔径雷达理论与对抗[M]. 北京: 国防工业出版社, 2013: 139-142.
    LI Yuan. Theory and Countermeasure of Inverse Synthetic Aperture Radar[M]. Beijing: National Defence Industry Press, 2013: 139-142.
    BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: A comparison with state of the art SR techniques[C]. International Workshop on Compressed Sensing Theory Its Applications to Radar, Aachen, Germany, 2016: 227-231. doi: 10.1109/CoSeRa.2016. 7745734.
    汪玲. ISAR运动补偿技术研究[D]. [硕士论文], 南京航空航天大学, 2003: 28-35.
    WANG Ling. Study on ISAR motion compensation[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2003: 28-35.
  • 期刊类型引用(8)

    1. 胡长雨,陈春风,易文忆,董宇宸,李晖,汪玲. 结合最近邻图模型的稀疏ISAR成像方法. 电子学报. 2024(01): 170-180 . 百度学术
    2. 邵振国,林洪洲,陈飞雄,林俊杰,张嫣. 采用区间动态状态估计的局部不可观系统谐波源定位. 电工技术学报. 2023(09): 2391-2402 . 百度学术
    3. 王莲子,汪玲,朱岱寅. 结合迁移学习基于全卷积神经网络的ISAR自聚焦算法. 航空学报. 2023(17): 251-262 . 百度学术
    4. 王玉皞,张玥,周辉林,刘且根,蔡琦. 基于深度迭代网络的穿墙雷达成像方法. 电波科学学报. 2022(04): 546-554 . 百度学术
    5. 宫蕊,汪玲,徐楚,朱岱寅. 一种联合InISAR成像和微多普勒特征提取的空间目标转动矢量估计方法. 电子与信息学报. 2021(03): 640-649 . 本站查看
    6. 孙小君,周晗,闫广明. 基于新息的自适应增量Kalman滤波器. 电子与信息学报. 2020(09): 2223-2230 . 本站查看
    7. 胡长雨,汪玲,朱栋强. 结合字典学习技术的ISAR稀疏成像方法. 电子与信息学报. 2019(07): 1735-1742 . 本站查看
    8. 曾创展,朱卫纲,贾鑫. 一种稀疏孔径逆合成孔径雷达成像算法. 西安电子科技大学学报. 2019(03): 123-129 . 百度学术

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  1425
  • HTML全文浏览量:  175
  • PDF下载量:  297
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回