JANASWAMY R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716-1728. doi: 10.1109/TAP.2003. 815415.
|
SILVA M A N, COSTA E, and LINIGER M. Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2138-2143. doi: 10.1109/TAP.2012.2186227.
|
ZHANG X and SARRIS C D. Error analysis and comparative study of numerical methods for the parabolic equation epplied to tunnel propagation modeling[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3025-3034. doi: 10.1109/TAP.2015.2421974.
|
AHDAB Z E and AKLEMAN F. Radiowave propagation pnalysis with a bidirectional three-dimensional vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1958-1966. doi: 10.1109/TAP.2017.2670321.
|
ZELLEY C A and CONSTANTINOU C C. A three- dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(10): 1586-1596. doi: 10.1109/8.805904.
|
LU G, WANG R, CAO Z, et al. A decomposition method for computing radiowave propagation loss using three- dimensional parabolic equation[J]. Progress in Electromagnetics Research M, 2015, 44: 183-189. doi: 10.2528 /PIERM15092005.
|
KUTTLER J R and DOCKERY G D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere[J]. Radio Science, 1991, 26(2): 381-393. doi: 10.1029/91RS00109.
|
ZHANG P, BAI L, WU Z, et al. Effect of window function on absorbing layers top boundary in parabolic equation[C]. IEEE 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014: 849-852.
|
BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of
|
Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/ jcph.1994.1159.
|
MARCUS S W. A hybrid (finite difference-surface Green,s function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1451-1458. doi: 10.1109/8.204735.
|
SONG G H. Transparent boundary conditions for beam- propagation analysis from the Greens function method[J]. Journal of the Optical Society of America A, 1993, 10(5): 896-904. doi: 10.1364/JOSAA.10.000896.
|
ZHANG P, BAI L, WU Z, et al. Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones[J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 31-44. doi: 10.1109/MAP.2016.2541620.
|
MIAS C. Fast computation of the nonlocal boundary condition in finite difference parabolic equation radiowave propagation simulations[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1699-1705. doi: 10.1109/TAP. 2008.923341.
|
LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IET, 2000: 116-138.
|
ZHANG X and SARRIS C. A gaussian beam approximation approach for embedding antennas into vector parabolic equation based wireless channel propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1301-1310. doi: 10.1109/TAP.2016.2647589.
|
LI L, LIN L K, WU Z S, et al. Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J]. IET Microwaves, Antennas Propagation, 2016, 10(6): 686-691. doi: 10.1049/iet-map.2015.0293.
|