高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进型绕射非局部边界条件的三维抛物方程分解模型预测电波传播

王瑞东 李正祥 逯贵祯

王瑞东, 李正祥, 逯贵祯. 基于改进型绕射非局部边界条件的三维抛物方程分解模型预测电波传播[J]. 电子与信息学报, 2018, 40(1): 151-156. doi: 10.11999/JEIT170311
引用本文: 王瑞东, 李正祥, 逯贵祯. 基于改进型绕射非局部边界条件的三维抛物方程分解模型预测电波传播[J]. 电子与信息学报, 2018, 40(1): 151-156. doi: 10.11999/JEIT170311
WANG Ruidong, LI Zhengxiang, LU Guizhen. Combination of the Improved Diffraction Nonlocal Boundary Condition and Three-dimensional Parabolic Equation Decomposed Model for Predicting Radiowave Propagation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 151-156. doi: 10.11999/JEIT170311
Citation: WANG Ruidong, LI Zhengxiang, LU Guizhen. Combination of the Improved Diffraction Nonlocal Boundary Condition and Three-dimensional Parabolic Equation Decomposed Model for Predicting Radiowave Propagation[J]. Journal of Electronics & Information Technology, 2018, 40(1): 151-156. doi: 10.11999/JEIT170311

基于改进型绕射非局部边界条件的三维抛物方程分解模型预测电波传播

doi: 10.11999/JEIT170311
基金项目: 

国家科技支撑计划(2015BAK05B01)

Combination of the Improved Diffraction Nonlocal Boundary Condition and Three-dimensional Parabolic Equation Decomposed Model for Predicting Radiowave Propagation

Funds: 

The National Key Technology Support Program (2015BAK05B01)

  • 摘要: 绕射非局部边界条件是基于有限差分法求解抛物方程时使用的一种透明边界条件。它的最大优点是只用一层网格就能很好完成波地吸收,而缺点是由于涉及到卷积积分的计算,因此计算速度低。针对此问题,该文首先引入可以加快其计算速度的递归卷积法和矢量拟合法。这里把结合了这两种数值计算方法的绕射非局部边界条件称为改进型绕射非局部边界条件。在此基础之上,提出将这种改进型的绕射非局部边界条件应用到3维抛物方程(3DPE)分解模型中。最后通过数值计算,证明了改性型绕射非局部边界条件3DPE分解模型在计算精度和计算速度方面的优势。
  • JANASWAMY R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716-1728. doi: 10.1109/TAP.2003. 815415.
    SILVA M A N, COSTA E, and LINIGER M. Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2138-2143. doi: 10.1109/TAP.2012.2186227.
    ZHANG X and SARRIS C D. Error analysis and comparative study of numerical methods for the parabolic equation epplied to tunnel propagation modeling[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3025-3034. doi: 10.1109/TAP.2015.2421974.
    AHDAB Z E and AKLEMAN F. Radiowave propagation pnalysis with a bidirectional three-dimensional vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1958-1966. doi: 10.1109/TAP.2017.2670321.
    ZELLEY C A and CONSTANTINOU C C. A three- dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(10): 1586-1596. doi: 10.1109/8.805904.
    LU G, WANG R, CAO Z, et al. A decomposition method for computing radiowave propagation loss using three- dimensional parabolic equation[J]. Progress in Electromagnetics Research M, 2015, 44: 183-189. doi: 10.2528 /PIERM15092005.
    KUTTLER J R and DOCKERY G D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere[J]. Radio Science, 1991, 26(2): 381-393. doi: 10.1029/91RS00109.
    ZHANG P, BAI L, WU Z, et al. Effect of window function on absorbing layers top boundary in parabolic equation[C]. IEEE 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014: 849-852.
    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of
    Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/ jcph.1994.1159.
    MARCUS S W. A hybrid (finite difference-surface Green,s function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1451-1458. doi: 10.1109/8.204735.
    SONG G H. Transparent boundary conditions for beam- propagation analysis from the Greens function method[J]. Journal of the Optical Society of America A, 1993, 10(5): 896-904. doi: 10.1364/JOSAA.10.000896.
    ZHANG P, BAI L, WU Z, et al. Applying the parabolic equation to tropospheric groundwave propagation: A review of recent achievements and significant milestones[J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 31-44. doi: 10.1109/MAP.2016.2541620.
    MIAS C. Fast computation of the nonlocal boundary condition in finite difference parabolic equation radiowave propagation simulations[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1699-1705. doi: 10.1109/TAP. 2008.923341.
    LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IET, 2000: 116-138.
    ZHANG X and SARRIS C. A gaussian beam approximation approach for embedding antennas into vector parabolic equation based wireless channel propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1301-1310. doi: 10.1109/TAP.2016.2647589.
    LI L, LIN L K, WU Z S, et al. Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J]. IET Microwaves, Antennas Propagation, 2016, 10(6): 686-691. doi: 10.1049/iet-map.2015.0293.
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  167
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 修回日期:  2017-10-23
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回